
TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

REAL TIME VISUAL LOCALIZATION AND MAPPING FOR MOBILE
ROBOT IN A DYNAMIC ENVIRONMENT

Submitted By:
Nischal Maharjan (073 BEX 421)
Rashik Shrestha (073 BEX 432)

Sajil Awale (073 BEX 436)
Shrey Niraula (073 BEX 443)

A PROJECT WAS SUBMITTED TO THE DEPARTMENT OF ELECTRONICS
AND COMPUTER ENGINEERING IN PARTIAL FULLFILLMENT OF THE
REQUIREMENT FOR THE BACHELOR’S DEGREE IN ELECTRONICS &

COMMUNICATION / COMPUTER ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
LALITPUR, NEPAL

April, 2021

PAGE OF APPROVAL

TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS
DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of
Engineering for acceptance, a project report entitled ”Real Time Visual Localiza-
tion and Mapping of Mobile Robot in Dynamic Environment” submitted by
Nischal Maharjan (073 BEX 421), Rashik Shrestha (073 BEX 432), Sajil Awale (073
BEX 436), Shrey Niraula (073 BEX 443) in partial fulfilment of the requirements for
the Bachelor’s degree in Electronics Communication / Computer Engineering.

Supervisor,
Mr. Jitendra Kumar Manandhar
Lecturer
Department of Electronics and Computer Engineering

Internal Examiner,
Mr. Suman Sharma
Lecturer
Department of Electronics and Computer Engineering

External Examiner,
Manoj Ghimire
Co-Founder/CEO
Rara Labs

DATE OF APPROVAL

ii

2nd March 2021

COPYRIGHT

The author has agreed that the Library, Department of Electronics and Computer
Engineering, Pulchowk Campus, Institute of Engineering may make this report freely
available for inspection. Moreover, the author has agreed that permission for extensive
copying of this project report for scholarly purpose may be granted by the supervisors
who supervised the project work recorded herein or, in their absence, by the Head
of the Department wherein the project report was done. It is understood that the
recognition will be given to the author of this report and to the Department of Elec-
tronics and Computer Engineering, Pulchowk Campus, Institute of Engineering in any
use of the material of this project report. Copying or publication or the other use
of this report for financial gain without approval of to the Department of Electronics
and Computer Engineering, Pulchowk Campus, Institute of Engineering and author’s
written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report
in whole or in part should be addressed to:

Head
Department of Electronics and Computer Engineering
Pulchowk Campus, Institute of Engineering
Lalitpur, Kathmandu
Nepal

iii

ACKNOWLEDGEMENT

We would like to express our gratitude to our department, Department of Electronics
and Computer Engineering as well as our major project supervisor Jitendra Kumar
Manandhar for providing us the opportunity to carry out the major project entitled
‘Real Time Visual Localization and Mapping of Mobile Robot in Dynamic Environ-
ment’.

We would also like to appreciate Robotics Club, IOE Pulchowk Campus for providing
the necessary hardware equipment required in our projects.We are equally thankful to
all the feedbacks and review from our teachers and supervisor which motivated us to
further enhance our project.

At last, we would like to thank our friends, seniors and families who assisted and driven
us for the completion of this project within the limited time frame.

iv

ABSTRACT

Robot localization is an integral part in mobile robotics. It is the base for path planning
and navigation tasks for robot and for AR/VR applications as well. SLAM has been a
well known method for mapping the unknown environment and localizing yourself in
the map. Visual SLAM, the category of SLAM, makes the use of visual sensors such
as camera to perform SLAM. Such visual sensors are available at cheap cost nowadays
and hence it is one of the most researched and popular topics in mobile robotics.

This project uses camera as its only sensor to build 3d map of entire room and localize
itself in the built map. The map can then be used for navigation purposes within the
mapped environment. Problems such as dynamically changing environment, varying
lightening conditions, lack of textured environment are the hindrances for visual SLAM.
Some of these problems has been well tackled in this project. Dynamic objects in the
environment have been masked to minimize its effect. Light invariant feature extraction
has been used to tackle with variations in lightening conditions.

Robot Operating System (ROS) has been used to communicate between various parallel
processes and between robot and PC. Most of the high computational tasks have been
done in PC. The robot then responses on the basis of commands given by processes
which are running on PC.

v

CONTENTS

PAGE OF APPROVAL ii

COPYRIGHT iii

ACKNOWLEDGEMENT iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF FIGURES xi

LIST OF TABLES xii

LIST OF SYMBOLS / ABBREVIATIONS xiv

1 INTRODUCTION 1

1.1 Background . 1

1.1.1 Mapping, Localization and Path planning 1

1.1.2 Simultaneous Localization and Mapping 2

1.1.3 Problem with dynamic environment 2

1.1.4 Problem with change in lightning 2

1.2 Objectives . 3

1.3 Scope of the Project . 3

2 LITERATURE REVIEW 4

2.1 Visual SLAM . 4

2.2 Dynamic Object Detection . 4

3 THEORETICAL BACKGROUND 6

vi

3.1 Image Formation . 6

3.1.1 Camera Model . 6

3.1.2 Pinhole Camera Model . 6

3.1.3 Camera Projection . 7

3.2 Visual Features . 8

3.2.1 ORB Features . 8

3.3 Multiview Geometry . 10

3.3.1 Fundamental Matrix . 12

3.3.2 Essential Matrix . 14

3.3.3 Triangulation . 14

3.4 Pose Estimation . 15

3.4.1 Pose from 2D correspondence 15

3.4.2 Pose from 2D-3D Correspondence(Linear PnP) 17

3.4.3 Pose from 3D-3D Correspondence(Procrustes Problem) 19

3.5 Graph Optimization . 20

3.5.1 Introduction . 20

3.5.2 Maximum Likelihood Estimation 20

3.5.3 Optimization . 22

3.5.4 Application . 24

3.6 Graph based SLAM with Landmarks 25

3.6.1 Modelling Graph . 25

3.7 Image Segmentation . 26

3.7.1 Types of Image Segmentation 26

3.8 Metrics used for Image Segmentation 27

3.8.1 Pixel Accuracy . 28

3.8.2 Mean Intersection Over Union (mIOU) 28

vii

3.8.3 Dice Coefficient . 29

3.9 Theoretical Knowledge before Segmentation Model 29

3.9.1 ResNet . 29

3.9.2 Skip Connection . 30

3.9.3 ResNet as Backbone . 31

3.10 Dilated Convolution . 31

3.11 Instance Segmentation Model . 32

3.11.1 MaskRCNN . 32

3.12 Semantic Segmentation Model . 33

3.12.1 PSPNet . 33

3.12.2 Internal Architecture of PSPNet 33

3.13 ICNet . 34

3.13.1 Internal Architecture of ICNET 34

3.13.2 Lowest Resolution Branch . 35

3.13.3 Medium Resolution Branch . 35

3.14 High Resolution Branch . 36

3.14.1 Cascade Label Guidance . 37

3.15 Differential Drive Model . 37

4 METHODOLOGY 39

4.1 General Setup . 39

4.2 ROS environment setup . 39

4.3 OpenVSLAM . 41

4.3.1 Mapping module . 42

4.3.2 Tracking module . 43

4.3.3 Global Optimization module . 46

4.3.4 Re-localization algorithm . 46

viii

4.4 Navigation . 48

4.4.1 ROS Navigation Stack . 48

4.4.2 Occupancy grid map . 48

4.4.3 Scaling Odometry . 49

4.5 Dynamic Obstacle Avoidance . 50

4.6 Mask Generation Using ICNet . 51

4.6.1 Model Comparison . 51

4.6.2 Custom Dataset Generation . 51

4.6.3 ICNet Training and Freezing of layers 52

4.7 Mobile Robot . 52

5 RESULT 54

5.1 In standard datasets . 54

5.1.1 Static Environment datasets . 54

5.1.2 Dynamic Environment datasets 55

5.2 In real world . 58

5.2.1 Mapping . 58

5.2.2 Localization . 59

5.2.3 Navigation . 60

5.3 Fine-tuning ICNet . 61

5.4 Comparison Between Masking Techniques 62

6 FUTURE ENHANCEMENT 65

7 CONCLUSION 66

REFERENCES 67

A APPENDIX: Linear Algebra 69

ix

A.1 Singular Value Decomposition . 69

A.2 Least Square Problem . 70

A.3 RANSAC . 72

B APPENDIX: Probability theory 74

B.1 Bayes Theorem . 74

x

LIST OF FIGURES

3.1 Pinhole Camera Model . 6

3.2 ORB Keypoint . 9

3.3 Image pyramid . 9

3.4 Epipolar Geometry [4] . 11

3.5 Epipolar Constraint . 12

3.6 Single edge graph . 20

3.7 Graph representation . 21

3.8 Graph based representation of Visual SLAM 26

3.9 Differences between Detection, Classification, Segmentation 27

3.10 Incorrectness of pixel accuracy . 28

3.11 IOU concept . 28

3.12 Comparison of ResNet vs Plain network. [7] 30

3.13 Skip Connection in ResNet [7] . 30

3.14 Identity Mapping in skip connection . 30

3.15 Dilated Convolution with increasing dilation factor [7] 31

3.16 PSPNet [21] . 33

3.17 ICNET Architecture [20] . 35

3.18 Cascade Feature Fusion [20] . 36

3.19 Differential Drive Model . 37

4.1 General communication outline . 39

4.2 ROS setup . 40

4.3 BLock Diagram of Structure from Motion Paradigm 42

4.4 Main Modules of OpenVSLAM [17] . 42

4.5 ORB feature points detected in input image 43

4.6 Effective 2D-2D correspondence estimation 45

xi

4.7 Tracking of the camera . 46

4.8 Relocalization Algorithm . 47

4.9 Modification in navigation stack . 48

4.10 Map scaling . 49

4.11 Scaling odometry information . 49

4.12 Before masking . 50

4.13 Mask . 50

4.14 After masking . 50

4.15 Differential Drive Mobile Robot(Model:Turtlebot1) 52

5.1 Estimated Trajectory Plot along with ground truth for Static Environ-
ment dataset . 54

5.2 Relative translational error for Static Environment dataset 55

5.3 Estimated Trajectory Plot along with ground truth for Walking xyz
dataset . 56

5.4 Relative Translational Error Plot for Walking xyz dataset 56

5.5 Estimated Trajectory Plot along with ground truth for Walking rpy
dataset . 56

5.6 Relative Translational Error Plot for Walking rpy dataset 57

5.7 3D map of the room . 58

5.8 Occupancy grid maps . 59

5.9 Localization result . 60

5.10 Path planning in pre-built map . 61

5.11 Loss and mIOU progression during fine-tuning 61

5.12 Masking Results on Multi environment walking dataset 62

5.13 Overlay Results on Multi environment walking dataset 63

5.14 Masking Results on Multi environment walking dataset 63

5.15 Overlay Results on Multi environment walking dataset 64

5.16 Speed vs Accuracy Comparison of Models 64

xii

LIST OF TABLES

5.1 Error obtained on the static environment datasets 55

5.2 Error obtained on the dynamic environment datasets 57

5.3 Inference Speed mIOU Comparison of Segmentation Models 64

xiii

LIST OF SYMBOLS / ABBREVIATIONS

BA Bundle Adjustment

BF Brute Force

BoW Bag of Words

BRIEF Binary Robust Independent Elementary Features

CFF Cascade Feature Fusion

CLG Cascade Label Guidance

FAST Features from Accelerated Segment Test

ICNet Image Cascade Network

mIOU Mean Intersection Over Union

ORB Oriented FAST and Rotated BRIEF

PnP Perspective N Point

PSPNet Pyramid Parsing Network

RANSAC Random Sample Consensus

ROS Robot Operating System

SIFT Scale Invariant Feature Transform

SLAM Simulataneous Localization And Mapping

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

xiv

1 INTRODUCTION

1.1 Background

Localizing yourself correctly is the primary and the most important task in many fields
like robotics and AR/VR applications. If a device/robot is aware about its location
and the 3D map of the environment, it can perform other tasks like navigating in the
environment, obstacle avoidance, placing augmented reality objects in the environment
and many more.

Humans are gifted with beautiful and extremely powerful brain which can process the
images taken from eyes and localize itself in the environment. Moreover, the brain
has ability to memorize the entire 3D environment which helps us to navigate to our
destination. Lots of researches have been carried out to mimic this ability of humans
to an artificial bots. Yet, today’s state of art system is still not able to match the level
of human brain’s ability to localize and navigate in 3D world.

But, robots has the freedom to use as many sensors of various types and as much
memory as they want while humans are limited by their five senses and memory.
Researchers have been using this advantage to match the localization ability of robots
to that of humans. Expensive sensors like 3D lidars can help to increase the accuracy
significantly.

Still, use of advance sensors are too costly and not practical to use in small robots and
mobile phones. Hence, accurate localization using low cost sensor, less memory and
less processing power has been today’s big research problem.

1.1.1 Mapping, Localization and Path planning

Mapping refers to making a map of the surrounding environment which you can use
later for localization and navigation purposes.

Localization refers to finding your position with respect to the prebuilt map of the
surrounding.

Once the current pose and prebuilt map is known, one can use various algorithms to
navigate from the current location to the desired destination. Its like using google maps.
Google has already created maps for you and GPS can provide absolute localization
in the map. Then when we search for way to any destination, it uses path planning
algorithms to find best and fastest path to the destination.

1

1.1.2 Simultaneous Localization and Mapping

Imagine you lost your way (well, you lost your smart phone too). How will you navigate
your way back to home? You will not know the way to return back as you are unaware
of the new environment i.e there is no prebuild map in your mind. Also, you are
unaware of where you are because you do not have any reference point in environment
with respect to which you can localize yourself.

In such situation, person tries to roam around and gather information about local
map, localizing in that map. For global localization propose, we need to find a specific
standard landmark (like coffee shop we know, the known road junction) with respect
to which absolute localization is possible.

This is very well known problem in robotics. An algorithm known as Simultaneous
Localization and Mapping (SLAM) is used to tackle this problem. More about this
algorithm in theory.

1.1.3 Problem with dynamic environment

Well, machine are not as smart as humans. It cannot figure out which part of the
surrounding are just temporary and which part are permanently there. For example,
a dumb machine might learn to turn right from the point where a dog was standing
in order to reach its destination. Well, it was technically correct for that moment, but
why will that dog stay in the same spot every time just to show path to the dumb
machine.

This is a huge problem in the world of robotic navigation. A robust algorithm is needed
to distinct between static and dynamic portion of the environment and store only those
information that comes from permanent portions of environment in its map database.

1.1.4 Problem with change in lightning

As explained earlier, machine is dumb. It cannot recognize the same room at night
which it saw earlier in sunlight. Basically the information about a picture of a room at
day and night are stored using completely different binary patterns by the computer. It
makes the navigation task much harder. The map which was made during day cannot
be used for localization and path planning at night or in low light conditions. Many
light invariant algorithms have been developed to tackle this problem, but still the
efficiency of localization is drastically reduced when the lightening condition during
the localization and mapping are completely different even in the same environment.

2

1.2 Objectives

The main objective of this project is to navigate in dynamic indoor environment using
Visual sensors only. The objectives of this project are as follows:

1. To perform Visual SLAM in indoor environment

2. To localize robot in the presence of moving people

3. To perform the task with minimal use of computational resources

4. To deal with absolute re-localization problem, also known as The kidnapped robot
problem

5. To deal with change in lighting conditions of the environment

1.3 Scope of the Project

Robotic navigation is widely used in different field robotics and computer vision. Self
driving cars, autonomous drones, package delivering robot by Amazon, food delivering
robots in restaurants and many more robotics applications uses SLAM for mapping
and navigation purposes.

In the current situation of COVID-19, these types of autonomous robots can be used
for reducing human interaction specially in hospitals. Moreover, in country like Nepal,
using expensive sensors is not feasible. So, Visual SLAM would be the best option for
navigation of autonomous bots. Use of cheap parts can help for the mass production
of these robots in low cost which can be used for betterment and development of the
country.

3

2 LITERATURE REVIEW

2.1 Visual SLAM

OpenVSLAM [17] is a graph based SLAM that uses orb features of each frame and
track the position of camera on the basis of movement of the feature points in the
corresponding frames.

ORB–SLAM [11], ORB-SLAM2 [12] use the similar techniques like openvslam which
are a kind of indirect SLAM that carries out visual SLAM processing using local fea-
ture matching among frames at different time instants. ORB-SLAM3 [2] incorporates
inertial data into the pose graph with landmarks as in ORB-SLAM2, which gives much
more accuracy in localization specially in the cases like fast change in camera direction,
dynamic environment and vibrations.

Some methods like RTAB-Map (Real-Time Appearance-Based Mapping) [9] uses graph
based SLAM approach based on an incremental appearance-based loop closure detec-
tor. The loop closure detector uses a bag-of-words approach to determinate how likely
a new image comes from a previous location or a new location.

Meanwhile, LSD–SLAM [5] is a different approach of direct SLAM, which realizes visual
SLAM processing directly exploiting brightness information of each pixel in images.
It should be noted that the direct method does not have to explicitly extract any
keypoints from images. Unlike the indirect method, the direct method can be correctly
operated in more texture-less environments because it utilizes whole information from
images. However, the direct method presents more susceptibility to changes in lighting
conditions. Additionally, direct method achieves lower performance than the indirect
one when using rolling shutter cameras.

2.2 Dynamic Object Detection

Each and every objects in the mapping gives some keypoints. This is fine until there
are some dynamic objects in the environment that hinder the mapping process. Dy-
namic objects in the scene can be considered to be the target object of CNN based
approach to filter them out. Mask-RCNN [8] is instance segmentation model to gen-
erate the mask for specified classes of objects. However it is far beyond the real time.
Some SLAM algorithm such as DynaSLAM [1] makes use of MRCNN approach to fil-
ter out the objects while performing SLAM. Detectron2 [18], the model zoo provided
by facebook AI research team provides the pretrained models based on Mask-RCNN
providing good quality prediction on segmentation output but slow for inferencing on
CPU environment limiting our target. CenterMask [10], the model zoo built upon the
detectron2, introduces the anchor-free segmentation that can perform faster segmen-
tation than detectron2. However, the performance of CenterMask is only good enough
at highcore GPU Titan Xp, and is unable to achieve high speed inference on regular
CPU processing.

4

Moreover, these methods [8, 14, 18] are all based on instance segmentation that tries to
instantiate the pixels of even same class that is slower than semantic segmentation that
performs classwise segmentation. On moving the focus to semantic methods, several
methods exists such as [19, 15, 13, 20]. ICNet [20] accepts three different resolutions
images in each branch and combine the coarse prediction map from low resolution
branch image with finer details obtained from the high-resolution branch.

The actual implementation of removal of keypoints features from the dynamic objects
are available in DynaSLAM [1]. It makes the use of MaskRCNN technique to mask
out the dynamic objects. However the real time is not possible in this approach with
CPU, hence more real time approach trading off the quality of segmentation is to be
referred which we have tried to carry out.

5

3 THEORETICAL BACKGROUND

3.1 Image Formation

3.1.1 Camera Model

In the Computer Vision tasks, the basic starts with defining the model of the camera.
On the basis of camera model the tasks are performed. The camera model refers to
the mathematical algorithms that are used to convert the position of 3D points of the
object into the 2D points in the image plane. If the camera parameters are known
and we have 3D points then the camera model can successfully calculate where that
point is positioned in the image. There are number of types of camera models such
as equirectangular model, fisheye model, pinhole camera model etc. Pinhole camera
model is explained below in detail.

3.1.2 Pinhole Camera Model

Figure 3.1: Pinhole Camera Model

Source: https://lhoangan.github.io/assets/images/posts/2018-07-30/camera_
model.png

It is the simplest camera model which describes the mathematical relationship of the
projection of points in 3D-space onto a 2D image plane. It is basically the perspective
projection followed by the rotation of the image plane by 180 degrees.

6

https://lhoangan.github.io/assets/images/posts/2018-07-30/camera_model.png
https://lhoangan.github.io/assets/images/posts/2018-07-30/camera_model.png

Let (X, Y, Z) be the 3D point in the space which is projected into the image plane at
(u, v) as shown in figure 3.1.Let f be the focal length of the camera i.e. the distance
of image plane from the optical centre. Hence using properties of similar triangles,

u

f
=
X

Z
and

v

f
=
Y

Z
(3.1)

3.1.3 Camera Projection

The projection of 3D point into the image plane by the means of perspective projection
can be represented by the following equation,uv

1

 = L(K
[
R t

]
X
Y
Z
1

) (3.2)

where,
L is Lens configuration of camera(intrinsic parameter)
K is Spatial relationship between sensor and pinhole known as Camera Matrix(intrinsic
parameter).[
R t

]
is the camera body configuration w.r.t. to world coordinate system(extrinsic

parameters)
P = K[R|t] in combination is termed as projection matrix.

For Camera Matrix, using equation (3.1) we have,

Zu = fX and Zv = fY and z = Z

In matrix form we get,

z

uv
1

 =

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

 (3.3)

This equation (3.3) projects 3D point in camera coordinate system into the image
coordinate system. For further conversion into pixel coordinates we need to know the
optical centre of the the camera, suppose (cx, cy). Let αx and αy be the pixel scaling
factors and s be the slanting factor, when image is not normal to the optical axis. Then
we get,

z

uv
1

 =

αx s cx
0 αy cy
0 0 1

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

 (3.4)

or,

z

uv
1

 =

fx s′ cx
0 fy cy
0 0 1

XY
Z

 (3.5)

7

The 3× 3 matrix in equation (3.5) is known as camera matrix K.
For Ideal perspective projection, we have,

z

uv
1

 =

fx s′ cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

 (3.6)

In case of distortion due to Lens configuration, we have two types of distortions; radial
and tangential distortion which can be represented respectively as below,

udistorted = u(1 + k1r
2 + k2r

4 + k3r
6) , vdistorted = v(1 + k1r

2 + k2r
4 + k3r

6), and

udistorted = u+ [2p1uv + p2(r2 + 2u2)] , vdistorted = v + [p1(r2 + 2v2) + 2p2uv]

Hence distortion parameters are [k1 , k2 , p1 , p2, k3]

3.2 Visual Features

Visual Features also known as feature points or corner points are the points in the
images that are invariant under change in view, different illumination and change in
scale. The visual features must be detection invariant as well as descriptor invariant.
Detection invariant refers to the characteristic of being detected i.e. when a point is
detected in one image it is to be detected in another one from same scene even if image
differ in scale and orientation.The features must also be descriptor invariant i.e. the
descriptor of the keypoints should not change significantly under view point changes
and hence the descriptor can be used for matching the features.

There are various kind of visual features on the basis of the way they are computed.
Some of them are SIFT(Scale Invariant Feature Transform), SURF(Speeded Up Ro-
bust Features), ORB(Oriented FAST and rotated BRIEF), KAZE features etc. SIFT
and SURF are patented and slow. ORB being faster is most preferred for real time
operations which has been used in our project. The brief explanation of ORB features
is as below.

3.2.1 ORB Features

ORB (Oriented FAST and Rotated BRIEF) as name suggests, ORB extractor uses
FAST algorithm to estimate the keypoints and uses BRIEF(Binary Robust Indepen-
dent Elementary Features) to compute descriptor. Given a pixel of the image ORB
compares its intensity with 16 surrounding pixels in a Bresenham circle of radius 3 as
shown in figure 3.2.

8

Figure 3.2: ORB Keypoint Figure 3.3: Image pyramid

Source: https://miro.medium.com/max/358/1*sMlXGwLPQU60UldEiY-Mow.png
https://pyimagesearch.com/wp-content/uploads/2015/03/pyramid_example.png

If Ip be the intensity of the pixel and h be the threshold the surrounding pixel is
said to be more brighter if its intensity is greater then (Ip + h) and less brighter if
less than (Ip − h) else consider of same level of brightness. The pixel is considered
as the keypoint if at least 12 points either have greater intensity, or lower intensity
than the pixel. Instead, by comparing only pixels at position 1,5,9 and 13 as show
in figure 3.2 we can reduce the computational time. This portion is FAST algorithm
which doesn’t account orientation component and multiscale feature. Hence ORB uses
multiscale pyraid in addition to FAST algorithm. The image pyramid is the multiscale
representation of image which has sequence of downscaled images as shown in figure 3.3.
The FAST algorithm detects points in each of scale level of pyramid hence keypoints
will be located effectively at different scales. Thus property of scale invariance of the
keypoints will be attained. For the rotation invariant property to be satisfied, the
orientation attribute has to be assigned to the keypoints which is done on the basis of
intensity centroid. The intensity weighted centroid of the patch with keypoint located
at centre is computed. The orientation is the direction of the vector from the corner
point to the so computed centroid. The moments of patch is given by

mpq =
∑
x,y

xpyqI(x, y)

where, I(x,y) is the intensity of the pixel at position (x,y) and the centroid is computed
on the basis of moment as

C = (m10/m00,m01/m00)

Thus orientation is given by
θ = atan2(m10/m10) (3.7)

After the detection invariant keypoint has been selected now the descriptor for those
points are to be specified. For which ORB uses BRIEF(Binary Robust Independent
Elementary Feature) descriptor. BRIEF converts the image patch around the keypoint

9

https://miro.medium.com/max/358/1*sMlXGwLPQU60UldEiY-Mow.png
https://pyimagesearch.com/wp-content/uploads/2015/03/pyramid_example.png

into binary feature vectors hence they could be used to describe the keypoints. It de-
scribes a keypoint by the bit strings of length 256. Due to pixel level analysis, Gaussian
smoothing is applied to eliminate high frequency noises. Then from predefined neigh-
bourhood of the keypoint termed as patch pair of pixels are selected at random.The
first pixel is selected using normal distribution with the standard deviation of sigma
with keypoint as centre, whereas second pixel is selected similarly using normal distri-
bution with spread of half of sigma centered at first pixel. The binary value is assigned
to pair as below

τ(p;x, y) =

{
1 : if p(x) < p(y)

0 : otherwise

The BRIEF feature vector is obtained as

fn(p) =
∑

1<i<n

2i−1τ(p;xi, yi) (3.8)

ORB introduces slight change into above mentioned method resulting in rBRIEF by
steering according to the orientation of the keypoint computed using equation (3.7).
For any binary feature at point (xi, yi) there is a 2× n matrix as

S =

(
x1 x2 ... xn
y1 y2 ... yn

)
Steered version of S is computed using the rotation matrix computed by θ.

Sθ = RθS

Hence using equation (3.8) steered BRIEF operator is computed as

g(p, θ) = fn(p)|(xi, yi) ε Sθ (3.9)

ORB thus discretizes angles into 12 degree increments and lookup table of precomputed
BRIEF features is created. The orientation θ must be consistent across views and
appropriate set of points from Sθ will be used to compute descriptor of the keypoint.
Like this the visual features are detected and describes from the image by the ORB
algorithm.

3.3 Multiview Geometry

The Multiview geometry refers to intrinsic projective geometry between multiple views.
If the number of views is to be 2 then it is termed as epipolar geometry. Epipolar
Geometry between two camera views is the geometry of the intersection of image
planes with the pencil of planes having baseline as axis, the line joining camera centres.
It is independent of the scene structure but only depends upon the camera intrinsic
parameters and the relative poses. This concept of epipolar geometry can be used to
address following points

• Correspondence Geometry: Given the point p in first view how the p′ in
second view is constrained.

10

• Camera Geometry: Given the corresponding image points in two views what
is the relative pose between the cameras.

• Scene Geometry: Given the correspondence and the camera projection matrix
the position of point in 3D space.

Figure 3.4: Epipolar Geometry [4]

Let us suppose a point P in 3D-space being viewed by two cameras positioned at CL
and CR as shown in figure 3.4. These three points spans a plane π called Epipolar
Plane . It is the plane which consist of the baseline. The corresponding projected
2D point projected using equation (3.6) are pL and pR respectively. For point pL in
first view having same point as pR in next view the epipolar geometry defines the
relationship between them. For every point pL in left view there exist a corresponding
line in the right view known as Epipolar Line and vice versa. Epipolar line is the
intersection of the an epipolar plane with the image plane. Here 3D points P, P1, P2, P3

are projected into the epipolar line in the right view whereas they all are projected
at a single point in the left view. Similarly the optical centre of one camera may be
projected on the view of next camera. The point thus obtained in figure shown by eL
and eR is termed as Epipole . All epipolar lines intersect at the epipoles. Epipole is
basically the vanishing point of the baseline direction. For further detail explanations
refer [6].The mathematical representation of this relationship between two views can
be understood with help of Fundamental Matrix and Essential Matrix explained below

11

3.3.1 Fundamental Matrix

Figure 3.5: Epipolar Constraint

Fundamental Matrix is the algebraic representation of the epipolar geometry. Suppose
a two cameras with centre at C1 and C2 have relative rotation and translation of R
and t as shown in figure 3.5. 3D point have a coordinate X1 with respect to camera
C1 and X2 with respect to second camera. The vector t is the translation vector shown
by the arrow in the figure. The ray back projected from 3D point to the second camera
is defined by vectorX2. Hence from vector addition the ray back projected on first
camera is X2 − t.
As relative pose between cameras is known ,

X2 = RX1 + t

or,X2 − t = RX1

Hence these three vector span a epipolar plane as show in figure 3.5, whose surface
normal is given by cross product of any two vectors in the plane as,

t×X2 = [t]×X2

where [t]× is the skew symmetric matrix for the vector t i.e. cross product is represented
as the matrix multiplication.
Since surface normal is perpendicular with the epipolar plane hence,

(X2 − t)T [t]×X2 = 0

or, (RX1)T [t]×X2 = 0

or,XT
1 R

T [t]×X2 = 0

or,−XT
2 [t]×RX1 = 0

or,XT
2 [t]×RX1 = 0

12

or,XT
2 EX1 = 0 (3.10)

where E = [t]×R is the essential matrix which will be discussed further below.
Let K be the camera matrix as defined in equation (3.5) and x1 and x2 be the cor-
responding projected point of same 3D point into image planes of camera C1 and C2

respectively then,
x1 = KX1 and x2 = KX2

Hence, equation (3.10) becomes

xT2K
−TEK−1x1 = 0

or, xT2 Fx1 = 0 (3.11)

where F = K−TEK−1 is the fundamental matrix. and equation (3.11) is the epipolar
constraint that the corresponding points in two views must satisfy.

Properties of Fundamental Matrix

• Fundamental Matrix is the 3× 3 matrix of rank 2

• Given corresponding points in two views the fundamental matrix satisfies equa-
tion (3.11)

• For any point x1 in first image the corresponding epipolar line in second image
is given by l2 = Fx1 and similarly l1 = F Tx2 is epipolar line in first image for
points x2 in second image.

• If e1 and e2 be the epipoles then Fe1 = 0 and eT2 F = 0. i.e, e1 is right null vector
of F and e2 is left null vector of F.

• If F is fundamental matrix for camera pair (C1, C2) then FT is fundamental
matrix for opposite pair (C2, C1)

Estimation of Fundamental Matrix from 2D correspondences
Given 2D correspondence between two views fundamental matrix can be estimated.
Suppose x1 = (ui, vi, 1) and x2 = (u′i, v

′
i, 1) be the corresponding ith homogeneous 2D

points in the images from the two views. Then from equation (3.11) we have,

xT2 Fx1 = 0

or,
[
u′i v′i 1

] f11 f12 f13

f21 f22 f23
f31 f32 f33

uivi
1

 = 0

or,

u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1
.
.

u′nun u′nvn u′n v′nun v′nvn v′n un vn 1

f11

f12

f13

f21

f22

f23

f31

f32

f33

= 0

13

Above equation is in the form of
Ax = 0

This is least square problem(See Appendix A.2) which can be solved by calculating
the pseudo inverse of the matrix A. This can be done simply by the use of technique
known as Singular Value Decomposition.(See Appendix A.1). Like this given the corre-
spondence points between two images the fundamental matrix representing the relation
between those two views can be estimated. We require to estimate 9 unknowns and each
correspondence provides a single constraint. But due to homogeneous representation
of image points, the degree of freedom is reduced to 8 because of scale factor. Hence
we require only 8 constraint to solve the equation i.e, if 8 correspondence is present we
are able to estimate the fundamental matrix. But due to noise in the points, we use
number of points and solve them using least square problem and is optimized based on
RANSAC algorithm (See Appendix A.3)

3.3.2 Essential Matrix

Essential Matrix defines the algebraic representation of epipolar geometry similar to
the fundamental matrix. It is the specialization of the fundamental matrix in case of
normalised image coordinates when camera matrix is known. When camera matrix
K is given, the image points can be multiplied by the inverse of the camera matrix
to obtain the normalised coordinates. Hence in case of normalised coordinates, the
fundamental matrix converts into essential matrix. The property of essential matrix is
similar to that of fundamental matrix.
As determined in equation (3.10) we have

E = [t]×R (3.12)

Essential matrix can be estimated from the fundamental matrix given the camera
calibration matrix K as

E = KTFK (3.13)

3.3.3 Triangulation

Given 2D-2D corresponding point between two images of same scene and relative po-
sition of second camera with respect to the first one, 3D coordinate of that point can
be calculated. This is known as Triangulation.
Suppose points x1 and x2 represent same 3D point X in two images captured by two
different camera having relative rotation and translation represented by matrix R and
t
Let

P1 = K1[I3∗3|03]

then
P2 = K2[R3∗3|t3∗1]

14

From projective transformation we have,

λ

[
x1

1

]
= P1

[
X
1

]
(3.14)

and,

λ

[
x2

1

]
= P2

[
X
1

]
(3.15)

Taking cross product on both sides we have,[
x1

1

]
× P1

[
X
1

]
= 0 and

[
x2

1

]
× P2

[
X
1

]
= 0

Combining above equations we have,
[
x1

1

]
× P1[

x2

1

]
× P2

[X1
]

= 0 (3.16)

Equation 3.16 is in the form of
Ax = 0

This equation is least square problem(See Appendix A.2). This can be simply solved
by the use of technique known as Singular Value Decompostion(See Appendix A.1).

3.4 Pose Estimation

The concept of multiview geometry or epipolar geometry can be used to estimate the
pose of the camera with respect to the initial pose of camera. The goal of estimat-
ing pose(Position and orientation) can be achieved using various methods using the
correspondence between image points as well as 3D scene points explained below.

3.4.1 Pose from 2D correspondence

In this method we use the concept that Essential Matrix incorporates the translation
and rotation matrix as shown in equation (3.12). Given the 2D-2D correspondence be-
tween two images of the same scene we are able to compute the relative pose between
two camera positions. This method can be broken down into two steps, first estimat-
ing the essential matrix from the correspondence and then decomposing the essential
matrix into rotation and translation matrices.

As shown in 3.3.1 we can compute fundamental matrix from 2D correspondence and
then use equation (3.13) to estimate essential matrix from the fundamental matrix. Or
we can directly estimate essential matrix by normalising the image points using camera

15

matrix K. The next step is to recover Rotation and Translation from the the estimated
Essential Matrix.

If we consider Initial camera position to be at the origin of world coordinate system as
shown in figure 3.5 then the image of origin in the second camera will be Epipole. Since
the translation vector is along the baseline, the epipole correspond to translation. we
know, [

x
1

]
= P

[
X
1

]
Considering normalised points, then t will be epipole in second image because,

or,

[
x
1

]
= [R |t]

0
0
0
1

 = t

Hence using the property of essential matrix and epipole,

tTE = 0

Hence translation being epipole in second image is the left nullspace of essential matrix.
Thus from SVD (See Appendix A.1) if E = UDV T where U in term of column vetors
be U = [u1, u2, u3] then t = u3 or − u3 i.e., U = [u1, u2, t]

U

1 0 0
0 1 0
0 0 0

V T = [t]×R

The [t]× operation is converted in terms of U. This cross product result transformation
of arbitrary vector into the space perpendicular to t itself. For any vector a new
orientation is defined by space u1, u2 and t since U is orthogonal matrix. Hence any
vector is transformed into this space using UT and then we remove the t elements so
that vector will remain perpendicular to the t. Then we rotate by 90 degree in the
space of u1 and u2, which is finally transformed back to original space using U matrix.
Therefore,

U

1 0 0
0 1 0
0 0 0

V T =

(
U

 0 1 0
−1 0 0
0 0 0

UT

)
R

Using SVD for rotation matrix R we have,

U

1 0 0
0 1 0
0 0 0

V T =

(
U

 0 1 0
−1 0 0
0 0 0

UT

)
(UY V T)

or, U

1 0 0
0 1 0
0 0 0

V T = U

 0 1 0
−1 0 0
0 0 0

Y V T

16

or,

1 0 0
0 1 0
0 0 0

 =

 0 1 0
−1 0 0
0 0 0

Y
Hence possible solutions for Y are

or, Y =

0 −1 0
1 0 0
0 0 1

 or
 0 1 0
−1 0 0
0 0 0

 =

0 −1 0
1 0 0
0 0 1

T

Therefore, we have

R = U

0 −1 0
1 0 0
0 0 1

V T or R = U

0 −1 0
1 0 0
0 0 1

T V T

So there are four possible results of the decomposition as

R = UY V T t = u3

R = UY TV T t = u3

R = UY V T t = −u3

R = UY TV T t = −u3

If det(R) = -1 then t = -t and R = -R. Here we have four configuration of cameras.
This ambiguity is removed by carrying out the triangulation using computed pose and
the configuration which gives point in front of camera is the optimal choice. Like this
we are able to compute pose of camera from 2D correspondence using the concept of
epipolar geometry and essential matrix.

3.4.2 Pose from 2D-3D Correspondence(Linear PnP)

Given the corresponding 2D-3D correspondence the pose of camera can be estimated.
This method is simple form of perspective n point algorithm also known as Linear
PnP. For 3D points in world coordinate system obtained after triangulation if we have
corresponding 2D keypoints in image present in the camera coordinate system, then
using this relation between 2D and 3D points and the concept of camera projection we
are able to estimate the pose of the camera in the world coordinate system.

Let xi→ Xi be the 2d-3D corresponding points and P1 = K1[I3∗3|03] be the projection
matrix of the camera. Then from projective transformation we have,

λ

[
x
1

]
= P

[
X
1

]
Taking cross on both sides we have,[

x
1

]
× P

[
X
1

]
= 0

17

or,

uv
1

×
P1

P2

P3

 X̃ = 0

where X̃ is the 3D homogeneous point in four dimension. and P1, P2, P3 are the 3 rows
of projection matrix respectively.

or,

uv
1

×
P1X̃

P2X̃

P3X̃

 = 0

or,

 0 −1 v
1 0 −u
−v u 0

P1X̃

P2X̃

P3X̃

 = 0

or,

 0 −1 v
1 0 −u
−v u 0

3×3

 X̃T 01×4 01×4

01×4 X̃T 01×4

01×4 01×4 X̃T

3×12

P T
1

P T
2

P T
3

12×1

= 0

or,

 0 −X̃T vX̃T

X̃T 0 −uX̃T

−vX̃T uX̃T 0

3×12

P T
1

P T
2

P T
3

12×1

= 0 (3.17)

This equation takes form of least square problem as Ax = 0 which is solved using
Singular Value Decomposition (See Appendix A.2). Each correspondence gives 2
constraints therefore to compute 12 unknown we require at least 6 point correspon-
dence. Hence we have computed the elements of projection matrix. Now we need to
extract the Rotation and Translation from the Projection matrix given the camera
matrix K.
We know,

P = K[R |t]

or,K−1P = [R |t]

Hence
R = K−1P1:3 and t = K−1P4

Since R must be orthogonal matrix with determinant 1 it must be cleaned up and
translation vector must be scaled.

R = UDV T Using SVD

Rc = UV T , tc = t/D1,1 ifdet(UV T) = 1

Rc = −UV T , tc = −t/D1,1 ifdet(UV T) = −1

Like this we can estimate the pose of camera given 2D-3D point correspondence.
RANSAC algorithm is used to reject the outliers and compute accurate pose of the
camera.

18

3.4.3 Pose from 3D-3D Correspondence(Procrustes Problem)

Given two set of corresponding 3D points

A = {a1, a2,, an}

B = {b1, b2,, bn}

we find the scaling (s), rotation(R) and translation(T) transformation called similitude
transformation that satisfies

Ai = sRBi + T (3.18)

This method is also known as Procrustes Problem. Given the no of correspondence
N > 3, we can compute the required R and T by solving the following minimization
problem.

min
R,T

N∑
i=1

||Ai −RBi − T ||2 (3.19)

Hence differentiating w.r.t T, we obtain translation as the difference between the cen-
troids as,

T =
1

N

N∑
i

Ai −R
1

N

∑
iNBi = Ā−RB̄

Hence the objective function can be written as

min
R
||A−RB||2F

where
A = (A1 − Ā, A2 − Ā,, An − Ā)

B = (B1 − B̄, B2 − B̄,, Bn − B̄)

This the Frobenius norm which can be represented in term of trace as,

||A−RB||2F = tr(AAT) + tr(BBT)− tr(RBAT)− tr(ABTRT)

The last two negative terms are equal , hence the minimization problem can be con-
verted to maximization problem.

max
R

tr(RBAT)

Here, RBAT is a 3× 3 matrix. If SVD of BAT is USV T and Z = V TRU then,

tr(RBAT) = tr(RUSV T) = tr(ZS) =
3∑
1

ZiiSi <=
3∑
1

Si

19

Since Z is orthogonal matrix its diagonal elements are less than or equal to 1. Hence
the tr(RBAT) is maximized when Z is identity matrix.

Z = V TRU = I

R = UTV

Like this we can estimate the translation and rotation between two coordinate system
given the point corresponding points.

3.5 Graph Optimization

3.5.1 Introduction

A graph is basically collection of numbers of nodes connected to each other by edges.
Each node of the graph represents a state variable to optimize, each edge between
two variables represents a pairwise observation of the two nodes it connects. The
state variables and observations can be scalar quantity or high dimensional quan-
tity. For example, for a robot moving in floor, [x, y, yaw] can be state variable and
[linear velocity, angular velocity] can be measurement. Measurement in an edge de-
pends only on two state variables in nodes it connects.

The overall goal in these problems is to find the configuration of parameters or state
variables that maximally explain a set of measurements affected by Gaussian noise

3.5.2 Maximum Likelihood Estimation

For simplicity, let us take single edge of graph having measurement zij, connecting two
state variables (i.e parameters) xi and xj as shown in figure 3.6.

Figure 3.6: Single edge graph

For any initial guess of parameters xi and xj, we can find the estimated value of zij
using measurement model. The difference between this estimated zij and measured zij
gives the error term, which we aim to minimize. In case of visual slam this error term
is actually the re-projection error.

Estimated zij is the function of xi and xj represented by P ,

ẑij = P (xi, xj) (3.20)

20

Since, the measurement is affected by Gaussian noise, the error distribution can be
represented as,

L(zij, ẑij) =
1√

2πσ2
ij

exp
−(zij − ẑij)2

2σ2
ij

(3.21)

where, σij = Standard Deviation of measurement noise

Now, likelihood of all the measurement terms can be obtained as the product of likeli-
hood of each individual measurements,

L =
∏
i,j

L(zij, ẑij)

L =
∏
i,j

L(zij, P (xi, xj)) (3.22)

The problem turns to be maximizing the above likelihood function to get best estimate
of x. Where, x = [x0, x1, x2, ...xn] represents array of all the unknown parameters.

Figure 3.7: Graph representation

Best estimate of x is given by,

x̂ = arg max
x

∏
i,j

L(zij, P (xi, xj))

In order to get rid of the exponential root e and turn this maximization problem to be
a minimization problem, we minimize the −log likelihood instead:

x̂ = arg min
x
−log(

∏
i,j

L(zij, P (xi, xj)))

21

x̂ = arg min
x
−log(

∏
i,j

1√
2πσ2

ij

exp
−(zij − P (xi, xj))

2

2σ2
ij

)

Here, eij = zij − P (xi, xj) is the error term.
eij is the function of xi, xj and zij i.e eij = eij(xi, xj, zij)
Since, xi and xj are only varying quantities and zij will always be constant for particular
eij, we will write eij = eij(xi, xj, zij) to simplify the notation.

x̂ = arg min
x
−log(

∏
i,j

1√
2πσ2

ij

exp
−e2

ij

2σ2
ij

)

x̂ = arg min
x
−
∑
i,j

log(
1√

2πσ2
ij

exp
−e2

ij

2σ2
ij

)

x̂ = arg min
x
−
∑
i,j

log(
1√

2πσ2
ij

) +
−e2

ij

2σ2
ij

Here, the first term and coefficient of second term (1/2) are constant terms (i.e inde-
pendent of x), hence can be removed.

x̂ = arg min
x

∑
i,j

e2
ij

σ2
ij

Here,

Ωij =
1

σ2
ij

Ωij is called information matrix, which is just the inverse of covariance matrix σ2
ij

x̂ = arg min
x

∑
i,j

eTijΩijeij (3.23)

x̂ = arg min
x
F (x) (3.24)

3.5.3 Optimization

Let x̌ be the initial guess value of x. i.e x̌ = [x̌0, x̌1, x̌2, ...x̌n]

22

Then we need to find the best estimate of change in x i.e ∆x̂, which gives minimum
value of F (x̌ + ∆x).

∆x̂ = arg min
∆x

F (x̌ + ∆x)

We have,

F (x̌ + ∆x) =
∑
i,j

eij(x̌i + ∆xi, x̌j + ∆xj)
TΩijeij(x̌i + ∆xi, x̌j + ∆xj)

Here, eij is non linear function. So, we approximate it at x = x0 using first order taylor
expansion.

eij(x̌i + ∆xi, x̌j + ∆xj) ≈ eij(x̌i, x̌j) +
deij
dxi

∣∣∣∣
xi=x̌i,xj=x̌j

∆xi +
deij
dxj

∣∣∣∣
xi=x̌i,xj=x̌j

∆xj

eij(x̌i + ∆xi, x̌j + ∆xj) ≈ eij(x̌) + Jij∆x

where,
x̌ = [x̌0, x̌1, x̌2, ...x̌n]

∆x = [∆x0,∆x1,∆x2, ...∆xn]

Jij =
[
deij
dx0

,
deij
dx1

,
deij
dx2

, ...
deij
dxn

]
is the Jacobian of eij computed at x̌

Note that, eij still depends upon only xi and xj, not the whole set of x. And, Jij is
very sparse array as eij changes with respect to xi and xj only.

So, we have

F (x̌ + ∆x) ≈
∑
i,j

(eij(x̌) + Jij∆x)TΩij(eij(x̌) + Jij∆x)

F (x̌+∆x) ≈
∑
ij

{eij(x̌)TΩijeij(x̌)+[2eij(x̌)TΩijJij(x̌)]∆x+∆xT [Jij(x̌)TΩijJij(x̌)]∆x}

Put,
cij = eij(x̌)TΩijeij(x̌)

bij = eij(x̌)TΩijJij(x̌)

23

Hij = Jij(x̌)TΩijJij(x̌)

We get,

F (x̌ + ∆x) ≈
∑
i,j

cij + 2bij∆x + ∆xTHij∆x

Put,

c =
∑
i,j

cij b =
∑
i,j

bij H =
∑
i,j

Hij

We get,
F (x̌ + ∆x) ≈ c+ 2b∆x + ∆xTH∆x (3.25)

Equation 3.25 is in quadratic form (analogous to (c + bx + ax2)). So, its minimum
value exists when its derivative term equals to zero.

δF (x̌ + ∆x)

δ∆x

∣∣∣∣
∆x=∆x̂

= 0

δ(c+ 2b∆x + ∆xTH∆x)

δ∆x

∣∣∣∣
∆x=∆x̂

= 0

2b+ 2H∆x̂ = 0

H∆x̂ = −b (3.26)

Equation 3.26 can be solved to find ∆x̂. Now, the previous guess value can be updated
by adding the estimated change.

x̂ = x̌ + ∆x̂ (3.27)

This process can be repeated again and again iteratively to get best estimate of x.

3.5.4 Application

Graph optimization can be used in wide range of problems that can be modeled as
graph. It can be used in fields like Simultaneous Localization and Mapping (SLAM),
Bundle Adjustment (BA).

24

3.6 Graph based SLAM with Landmarks

3.6.1 Modelling Graph

The SLAM problem can be modeled as graph with number of edges and vertices,
which can then be solved by using graph optimization algorithms. Visual SLAM has
two types of unknowns and two types of knowns.

Two types of unknowns are:

• Pose of robot (6 dim)

• Position of landmark (3 dim)

Two type of known values are:

• 2D projection of landmark to robot pose (2 dim)

• Odometry between robot poses (6 dim)

The unknown terms are represented by the vertices in graph and the known terms are
represented by edges in the graph. The known terms are actually the measurement
values i.e the image of landmark taken by camera positioned at robot pose (in case of
Visual SLAM) and relative transformation between two robot poses given by any type
of sensor that gives odometry information like wheel encoders and IMU. The unknown
terms are the state variables which needs to be optimized based on known measurement
values.

A measurement depends only on the relative location of two state variables, e.g., an
odometry measurement between two consecutive poses depends only on the connected
poses. Similarly, a measurement of a 3D point or landmark depends only on the location
of the observed point in the world and the position of the sensor.

The key difference between SLAM and BA is, BA lacks second type of known quantity
i.e odometry information between robot poses. So, BA solely depends upon bunch of
images without any information of how camera has moved while taking those images.

25

Figure 3.8: Graph based representation of Visual SLAM

Graph based SLAM using landmarks uses same technique of graph optimization as
explained earlier. Just a difference is, now we have different varieties of nodes and
edges.

3.7 Image Segmentation

Image segmentation is process to segment the parts of the image into categories. It
classifies each pixel to corresponding classes. This is different than the classification
and detection problem where we either needs to find whether particular object is in
that image and anchor them with bounding box. In this, we need the pixel wise
classification.

3.7.1 Types of Image Segmentation

Image segmentation methods are simply categorized into Semantic segmentation In-
stance Segmentation methods. The semantic segmentation is class level segmentation
methodology in which the objects that belongs to the same class are identified with
same mask. When each instances (objects) of that same class are again distinguished
with different mask, it is termed as Instance Segmentation.

26

Figure 3.9: Differences between Detection, Classification, Segmentation

Source: https://files.ai-pool.com/d/DV8TLgkWsAEGsEs.jpg

Figure 3.9 clearly explains the concept between semantic segmentation and instance
segmentation. In the semantic segmentation, all the sheep are given the same mask
(blue colored mask), but in the instance segmentation, each sheep is assigned the
different masks(different colored masks). The figure 3.9 also highlights the differences
between the object recognition and object detection and segmentation methods.

3.8 Metrics used for Image Segmentation

Several metrics exists for the image segmentation task. The simplest one is pixel ac-
curacy. There exists advanced metrics such as Jaccard Index, Dice Coefficients etc.
Jaccard index, also called mIOU is common benchmark metric to represent the seg-
mentation precision. It has been used in segmentation and classification task based on
ResNet, PSPNet and ICNet as well.

27

3.8.1 Pixel Accuracy

Figure 3.10: Incorrectness of pixel accuracy

Pixel accuracy, or simply accuracy is percentage of how much pixels are correctly
classified. It is easiest metric which does not properly reflect the correctness of image
segmentation. To demonstrate, consider two classes ’car’ and ’background’ colored
white and black as seen in the figure 3.10. Let us suppose that out of 100% area,
car occupies 15% of area and background occupies remaining 85% area. In such case,
the pixel accuracy will be atleast 85% because system could classify the 85% of the
background image. So, pixel accuracy does not specifically target to the desired class
and rather gives the overall measure.

3.8.2 Mean Intersection Over Union (mIOU)

mIOU or Jaccard Index is the mean of IOU of each segmented classes. IOU gives the
ratio of intersected area to the union of area between the segmented image and ground
truth image. mIOU takes the mean of each IOU.

Figure 3.11: IOU concept

28

The concept of mIOU is explained in figure 3.11. Let us consider y be the ground
truth object to be segmented and y’ be the predicted mask for that object outputted
by the segmentation system. In figure 3.11, there are regions for False Positive(FP),
True Positive(TP) and False Negative(FN). FN is the region where system failed to
classify. This means that, actual object do exist but the system has classified to be
false. FP is the region where system has falsely classified to be true. TP is the region
where system actually predicted true. Hence, IOU is given by,

IOU =
Area of Intersection

Area of Union

=
TP

FP + TP + FN

(3.28)

When the mean of IOU of M objects are taken, it is considered as mIOU given as:

For M objects (classes), mIOU =

∑M
i=0(IOUi)

M
(3.29)

The equation 3.29 represents the mean IOU calculation where mean is taken across
every classes present.

3.8.3 Dice Coefficient

Even though mIOU is better prediction metric than pixel accuracy, it does not tries
to penalize the effects. Dice Coefficient also known as F1 score is harmonic mean of
precision and recall. Being harmonic mean, it tries to penalize the effect of minimum
valued term. Like the IoU, they both range from 0 to 1, with 1 signifying the greatest
similarity between predicted and truth.

Dice Coefficient is given as:

Dice Coefficient =
2 Area of intersection

Area of Union + Area of Intersection

=
2TP

FP + TP + FN + TP

=
2TP

FP + 2TP + FN

(3.30)

The equation 3.30 is same as F1 score which is harmonic mean of precision and recall.

3.9 Theoretical Knowledge before Segmentation Model

3.9.1 ResNet

Emergence of ResNet has created huge impact on the deep learning and computer
vision field. The development of ResNet has allowed to train the convolution layers

29

to much deeper level and opened the path for more advanced object detection and
segmentation task. The problem of vanishing/exploding gradients has been addressed
by establishing identity mapping with the help of skip connections. The figure 3.12
from original ResNet paper shows that for regular plain network, the train error (shown
in thin line) is more for deeper network in comparison to ResNet where train error is
smaller for deeper layer. This demonstrates the significance of the identity mapping
in ResNet. The figure 3.12 represents train and validation error variation between the
plain network and ResNet where thin line represents the training error and thick line
represents the validation error.

Figure 3.12: Comparison of ResNet vs Plain network. [7]

3.9.2 Skip Connection

The idea of skip connection was not the original, and had been used in ”highway
networks”. However, ResNet was able to establish the skip connection without the
addition of new parameters compared to the gated skip connection used in ”highway
networks” that added the extra parameters.

Skip connection tries to maintain the identity mapping between the skipped blocks.
This does not degrade any performance since the stacking of layers still maintain the
identity mapping and results to same performance.

Figure 3.13: Skip Connection in ResNet [7] Figure 3.14: Identity Mapping in skip con-
nection

30

The figure 3.13 shows identity mapping by skip connection that formulates the F(x) +
x relation. The figure 3.14 shows more detailed elaboration of skip connection relation-
ship. Let us assume that, we have a[l] as intermediate output in some hidden layers.
Then from figure 3.14, if weights are negligibly small, w=0, and bias is considered as
zero, we can easily establish the relation as:

a[l+2] = ReLU(z[l+2] + a[l])

= ReLU(W [l+2]a[l+2] + a[l])

= ReLU(a[l])

(3.31)

The equation 3.31 represents the identity mapping.

3.9.3 ResNet as Backbone

Because of the ability of the ResNet to allow to train to very deep layers, ResNet has
been widely used as the backbone in many architecture. ResNet as backbone has been
used as feature extractor.

3.10 Dilated Convolution

The idea of dilated convolution is to increase the receptive field at same parameter
counts by introducing the dilated kernel. Dilated kernels can be seen in figure 3.15,
where dilation factor of 1 is equal to regular convolution.

Figure 3.15: Dilated Convolution with increasing dilation factor [7]

Mathematically, let F : Z2 → R be a discrete function. Let Ωr = [−r, r]2 ∩ Z2 and let
k : Ωr → R be a discrete filter of size (2r+ 1)2 The discrete convolution operator * can
be defined as:

31

(F ∗ k)(p) =
∑
s+t=p

F (s)k(t)

If l is the dilation factor, dilation convolution given as ∗l is given as:

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t)

In figure 3.15, the original 3×3 kernel expands up to 15×15. The number of parameters
is same as 3×3 = 9, the receptive field has increased tremendously. Hence, with dilated
convolution, the receptive fields can be increased exponentially.

3.11 Instance Segmentation Model

3.11.1 MaskRCNN

MaskRCNN (MRCNN) MaskRCNN is instance segmentation model that produces
state of art instance segmentation output built on top of faster RCNN method pro-
posed. There are three main regions in MRCNN:

1. Backbone + FPN: Backbone is the featre extractor that takes the input image
and extracts the feature. Feature extractors are in addition combined with the
FPN architecture that adds the scaling invariance to the backbone features. The
typical backbone architectures used are Resnet, VGG.

2. Region Proposal Network: RPN is lightweight network that proposes top anchors
(region) for existence of objects in image. In fact, it makes the use of anchor boxes
to propose the region where the object might lie. RPN operates on the feature
map rather the input map to optimize the computation performance.

RPN proposes the two anchor classes: foreground class and background class
which tells if there is object or not respectively. Several foreground anchors
may overlap with each other which are refined using bounding box refinement
technique

3. ROI classifier and Bounding Box Regressor: ROI classifier helps classify the
specific classes to the foreground objects detected and also refines the location
and size of bounding box to encapsulate the object. ROI classifier also contains
the ROI pooling that handles the variable input size

Instance Segmentation Mask is finally created for each ROI proposed region with the
help of convolution network (mask branch). It generates the 28× 28 sized mask which
is compared with the resized 28×28 ground truth to calculate the loss. However during
inferencing, 28× 28 mask generated is scaled upto the original size.

32

3.12 Semantic Segmentation Model

3.12.1 PSPNet

PSPNet stands for Pyramid Parsing Network. It is semantic network that tries to
achieve accurate prediction on even open and diverse environment. The network has
scored high records of mIOU accuracy 85.4% on PASCAL VOC 2012 and accuracy
80.2% on Cityscapes. It achieves good prediction result even for the most challenging
dataset ADE20k. Although being highly accurate model, PSPNet is far away from the
real time semantic segmentation.

The ideas of the PSPNet is built around the concept of global context understanding.
Traditional FCN based model failed to recognize the context and was far behind the
successful semantic prediction on open and diverse dataset. Even with the implementa-
tion of CNN based approach, the result was not accurate enough when the objects look
similar to each other. The boat was recognized as car due to similar appearance. This
would not have happened if system could understand the global context of ’car can not
be on water surface’. Hence PSPNet combines the traditional FCN based approach
with sub-region based pyramid pooling module to understand the global context.

3.12.2 Internal Architecture of PSPNet

In practice, momentous global scene prior is usually missed (not incorporated) due
to the fact that empirical receptive field of the CNN is small especially for high level
layers even though it is theoretically proven to be enough according to [22]. To address
this issue, sub-regions can be created to extract the sub-region contexts along with
the global context information.Thus, PSPNet combines a hierarchical global prior with
information from different scales and sub-regions.

There are four sub-regions under that forms the average pooled or max-pooled repre-
sentation for different locations. The pooling module for PSPNet is a four-level one
with bin sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6 respectively. In comparison to average
and max pooling, average pooling seems to perform the better.

Figure 3.16: PSPNet [21]

33

As seen in figure 3.16, the PSPNet consists of pyramid pooling module implemented to
achieve the concatenated feature map to pass to the convolution layer to generate the
final prediction. PSPNet uses the pretrained ResNet model with dilated convolution
for feature map.

In the architecture shown in figure 3.16, 1 × 1 size kernel generate the global pooled
context. Followed by 1×1 is 2×2, 3×3 and 6×6 that generate the sub-region contexts.
The bilinear interpolation is then used to up-sample the contexts to original size. After
up-sampling step, original feature map combines with the sub-regions feature maps.
Use of ResNet improves the performance loss due to the deep layer by establishing iden-
tity mapping through skip connections. This maintains the computational complexity
of PSPNet same as that of FCN based architecture.

3.13 ICNet

ICNet stands for Image Cascade Network which is semantic segmentation model tar-
geted to achieve real time inference of high resolution 1024 × 2048 size image at real
time inference speed of 30fps with considerably high value of mIOU at low computation
cost. The system has shown to be very effective across all standard datasets such as
COCO-Stuff, CityScapes and CamVid datasets.

The base idea of ICNet is to pass original image to three branches of various scales (res-
olutions). With the help of low resolution branch, the coarse feature map is extracted
which is further refined with the help of medium and high resolution branches.The low
resolution branch takes the input image of H/4×W/4 which gets passed through the
series of the convolution layers. This branch down-samples at the rate of 1/8. Finally,
low resolution feature map of 1/32th (=1/4 image Size × 1/8 down-sample rate) is
obtained. The middle branch or half branch takes H/2×W/2 sized image which gets
passed through three convolution layers each of which down-samples at the rate of 2
such that total down-sample rate for whole convolution layers is 1/8. Final size of
feature map is 1/16th of original due to 1/2 image size times the 1/8 down-sample
size.The highest branch or unit scaled branch takes original H ×W image that gets
passed through very small number of convolution layers compared to lowest branch.
The total down-sample rate of 8 is achieved that generates the final feature map of size
1/1 image Size× 1/8 down-sample rate = H/8×W/8 size.

3.13.1 Internal Architecture of ICNET

The time budget analysis carried out by [20], tells that there is trade off between the
speed and accuracy. It even mentions that it is more computationally more expensive to
feed the high dimensional image input directly to the system. To mitigate these issues,
ICNet takes three separate scaled images and combines the result from branches using
cascading unit known as Cascade Feature Fusion (CFF).

34

Figure 3.17: ICNET Architecture [20]

The details of the branching scheme are shown in figure 3.17. The topmost, middle
and lowermost branches in figure 3.17 are low-resolution,medium-resolution and high-
resolution branches respectively. There is trade off between the scale of images and size
of convolution layers. More convolution layers are present in the low resolution branch
to extract the most of the semantic details. Minor details are extracted from the high
resolution branch with only few number of convolution layers. Such minor details are
extracted within fast time because of less number of convolution layers.

3.13.2 Lowest Resolution Branch

Lowest Resolution branch is FCN based architecture branch modelled using PSPNet
for dilated convolution in ResNet backbone. The dilation factor is set as 2 for all other
layers except at stage four and stage five of ResNet where dilation factor is set as 4.
As seen in figure 3.17, each convolution layer is consecutively down-sampling at rate
of 8. Final output of down-sample and dilated convolution of size C×H/32×W/32 is
passed to C ′× 1× 1 convolution filter to reduce the size of output channel appropriate
for the CFF.

3.13.3 Medium Resolution Branch

Medium resolution branch takes half size image input. This input is passed along the
series of the convolution layers each having the down-sample rate of 2. After being
passed through three convolution layers, the output feature map of H/16 ×W/16 is
obtained. In order to provide the missing details, this branch shares the computation
with the lowest resolution branch. Finally with the help of CFF, the 1/16 scaled

35

output from this branch is combined with the 1/32 scaled output feature map from
low resolution branch yielding the resultant feature map of H/16×W/16.

3.14 High Resolution Branch

In this branch, the number of convolution is limited to less number. Only three con-
volution layers are present that yields a H/8×W/8 output. Cascading of this output
map with H/16×W/16 output feature map from medium resolution branch happens at
CFF. The output from CFF is then passed to bilinear interpolation based up sampler
to achieve the full scaled output feature map.

Figure 3.18: Cascade Feature Fusion [20]

As seen in figure 3.18, this unit takes the two features map inputs F1 and F2 of size
C1×H1×W1 and C2×H2×W2 respectively where F2 is double the spatial size of the
F1. The fusion unit even takes another input of ground truth label of size 1×H2×W2
from Cascade Label Guidance. Up-sampling is performed with F1 to make its spatial
size equal to F2. Dilated 3× 3 convolution is performed on the up-sampled F1. F2, on
the other hand is passed to the projection convolution having kernel of size 1× 1. The
dilated F1 and projected F2 are summed to obtain F2’ whose size is C2×H2×W2.
The label input is directly fed to the softmax cross entropy unit where the loss is found.
This loss represents the semantic accuracy.

In case of ICNet network, for CFF present in medium branch, takes F1 and F2 as
C × H/32 ×W/32 output feature map (of low resolution branch) and H/16 ×W/16
feature map of medium branch along with the 1/4 scaled ground truth as label.

36

3.14.1 Cascade Label Guidance

Cascade Label Guidance enhances the learning process. Ground truth label of 1/16,
1/8 and 1/4 are given to respective branch in order to train the ICNET with the help
of softmax cross entropy loss given as:

L = −
∑

λt
1

YtXt

Yt∑
y=1

Xt∑
x=1

log
eF

tn̂,y,x∑N
n=1 e

F tn̂,y,x
(3.32)

Motion segmentation in case of static camera can be easy done with methods like
background subtraction, but the latter one might need to compensate for the ego
motion.

3.15 Differential Drive Model

Figure 3.19: Differential Drive Model

Source: https://image.slidesharecdn.com/mobot-1227974950676397-8/95/intr
oduction-to-robotics-25-728.jpg?cb=1227946763

Let L be the length of the wheel base i.e. distance between two wheels of radius
r. Suppose the required linear velocity and angular velocity of robot be v and w
respectively. Then,

ẋ = vcosθ,

ẏ = vsinθ,

θ̇ = w

(3.33)

where, ẋ is x-component and ẏ is y-component of velocity and θ is angular displacement.
Let R = v/w radius of the path that the robot is moving. and el and er be the respective
arc length covered by left and right wheel at time 4t and vl and vr be linear velocities

37

https://image.slidesharecdn.com/mobot-1227974950676397-8/95/intr
oduction-to-robotics-25-728.jpg?cb=1227946763

and wl and wr be angular velocities of wheel. Then,

θ =
el

(R− L
2
)

, θ =
er

(R + L
2
)

er − el = θL

θ =
er − el
L

θ̇ =
vr − vl
L

θ̇ =
r(wr − wl)

L
(3.34)

Similarly considering circular sector approximation valid for small movements,

x =
el + er

2
cosθ , y =

el + er
2

sinθ

ẋ =
r(wl + wr)

2
cosθ (3.35)

ẏ =
r(wl + wr)

r
sinθ (3.36)

Comparing equation (3.33) ,equation (3.34), equation (3.35) and equation (3.36) we
have,

v =
r(wl + wr)

2

w =
r(wr − wl)

L

Solving above equations we get,

wl =
2v − wL

2r
, wr =

2v + wL

2r
(3.37)

These are the angular velocities of the left and right wheel in terms of robot dimensions
and the required angular and linear velocities of the robot.

38

4 METHODOLOGY

4.1 General Setup

Figure 4.1: General communication outline

Figure 4.1 shows the general hardware setup with the data flows. Here, a differential
drive robot equipped with cameras, RaspberryPi and arduino is connected to PC via
common access point. The need of connection to a PC is to get good processing power.
Using raspberry pi for all the tasks wasn’t possible due to its computational limitation.
Here, arduino performs all the controlling tasks, raspberry pi basically accumulates all
the sensor information and sends it to PC via common access point. It also receives
motion commands from PC and sends it to arduino for controlling the bot.

4.2 ROS environment setup

The entire system is built on top of Robot Operation System (ROS). ROS helps to easily
communication between different independent processes running in same or different
devices. Currently 8 processes are running in parallel communicating to each other via
ROS topics. The message flow between various ROS nodes can be seen in figure 4.2

39

Figure 4.2: ROS setup

Brief description of various ROS nodes:

1. usb cam
It reads the image from USB camera connected to raspberry pi and publishes
compress image it in ROS environment with topic name
/usb cam/image raw/compressed.

2. send serial
This node controls the physical robot. It subscribes to the /cmd vel topic and
sends serial data to arduino, which then controls the motors.

3. image transport
It subscribes the compressed image topic from raspberry pi, uncompress it, and
then publishes the /image raw.

4. masker
It subscribes the image topic /image raw, then computes the mask of the image
and publish it in another topic /mask. The process of obtaining mask from the
given rgb image is explained in details below.

5. openvslam
This is the most important node of the whole system. OpenVSLAM forms

40

the backbone of SLAM process. OpenVSLAM subscribes to topics /image raw,
/mask from the two different nodes as shown in block diagram 4.2. Then it
uses graph based optimization techniques to obtain odometry of the robot and
publishes it in topic /odom.

6. map server
This node serves/publishes the 2D map pf the environment if the ROS topic /map.
The main purpose of 2D map is for navigation in the environment. As, move base
package can understand only 2D maps for generating navigation commands, this
map is required and enough to achieve 2D navigation goals.

7. move base
This is the main node which handles all the navigation and movement of turtlebot.
Once it has a good map and accurate localization given by openvslam, it uses
A-star algorithm to navigate in the environment and reach the goal. It publishes
/cmd vel to move the differential drive bot.

4.3 OpenVSLAM

We have used OpenVSLAM Framework in this project which is based upon the Struc-
ture from Motion Paradigm. The block diagram showing basic overlay of SFM paradigm
is shown in figure figure 4.3. In simple words the Visual features are extracted from the
input image which is used to generate the 2D-2D correspondence by matching it with
the keypoints of previous frame or reference frame. The 3D points are generated by the
process of Triangulation from those correspondence given the pose of camera estimated
from the Linear PnP. The generated 3D point cloud is stitched together generating the
map hence called Mapping. From the generated 3D map and the keypoints of current
frame the 2D-3D correspondence is generated which used to estimate the pose of the
camera by Linear PnP thus carrying out the process of Localization. These two process
goes hand in hand simultaneoulsy in iterative way or in loop therefore the whole pro-
cess is termed as Simultaneous Localisation and Mapping(SLAM). And Since we have
used camera or Visual features for this purpose it is referred to as Visual SLAM. Since
the input of Linear PnP is output of Triangulation and vice versa there is presence
of noise hence the optimization is required. OpenVSLAM uses graph optimization for
that purpose. The detail explanation of how OpenVSLAM carries out these tasks are
explained in following sections.

41

Figure 4.3: BLock Diagram of Structure from Motion Paradigm

OpenVSLAM is a graph based SLAM technique that relies on graph optimization
techniques which was described with much detail in theory portion(See section 3.5. It
consists of 3 sub modules running parallely:

1. Mapping module

2. Tracking module

3. Global Optimization module

Figure 4.4: Main Modules of OpenVSLAM [17]

4.3.1 Mapping module

Mapping Module is one of the part of the system. Along with Localisation Map-
ping must go hand in hand in SLAM. This module is responsible for generating land-
marks(3D points) and then selecting the keyframes also known as reference frames on

42

the basis of the feature points detected. As discussed in section 3.3 given the corre-
spondence and the camera projection matrix the position of the point in 3D space can
be estimated by the method known as triangulation(See 3.3.3). This is known as Scene
Geometry. In the tracking module the pose of the camera will be estimated using
various algorithms. Also the 2D-2D correspondence between two frames are deduced
on the basis of the BRIEF descriptor of the ORB features(See section 3.2). Hamming
distance is used to estimate the similarity of the descriptor of the keypoints. Thus using
the estimated pose and the 2D-2D correspondence the 3D land mark is triangulated
thus creating the 3D point cloud which results into occupancy gird map when projected
onto 2D plane. The obtained landmarks is simultaneously used by tracking module to
estimate the pose of the camera. Thus the process of localizing and mapping occurs
simultaneously. The obtained 3D points are in the camera coordinate system. These
points are transformed into world coordinates system, in other words the local map is
stitched to previous global map. This is done by solving the Procrustes problem(See
section 3.4.3). The transformation between the local map and global map is estimated
using correspondence between overlapped landmarks and thus global map is formed.

During Initialisation in other words when we have no 3D map at beginning the tracking
module is not able to generate the pose of the camera in the absence of the 2D-3D
correspondence. Hence all we have is the 2D-2D correspondence at the beginning.
Hence the Pose of camera is estimated from it as explained in section 3.4.1. Then this
pose is used to generate the 3D points by triangulation. Due to this reason in case of
monocular camera the global scale is unknown.

4.3.2 Tracking module

This module of openvslam is the most important part of the algorithm as the estimation
of pose and tracking the trajectory of camera is carried out in this portion. The
foremost task carried out by this module before starting the process of pose estimation
is to read the input frames and extract the orb features points also known as keypoints
and its descriptors as explained in section 3.2.

(a) Original image
(b) ORB keypoints detected

Figure 4.5: ORB feature points detected in input image

43

Then using these descriptors further localisation algorithms are implemented.Three
localisation algorithm has been implemented in this section. They are

• Motion based Tracking

• BoW based Tracking

• Robust Based Tracking

The above order is the precedence of the algorithm that is used to track the pose of
camera. In case the previous method doesn’t succeed the algorithm switches to next
method. In case all three method fails then the LOST STATE is said to be encoun-
tered. Then the system need to implement the process of relocalization explained in
section 4.3.4.

Motion based Tracking
This is the first localization algorithm that is implemented. This method uses the
information of the motion model hence termed as motion based tracking. The rough
estimate of the camera motion is estimated from the motion model and using that
rough pose of camera with respect to previous pose the landmarks(3D points) of key-
points detected in the first frame are back projected on the consecutive frame using
equation (3.6). The back projected 2D points are matched with the points in the second
frame on the basis of the nearest descriptor which is determined using the Hamming
Distance between the BRIEF descriptors. Thus we obtained the 3D-2D correspondence
between the a point in 3D world Coordinate system and a 2D image point in the cam-
era coordinate system. Hence the pose of camera can be estimated using the method
of Linear PnP as explained in section 3.4.2. In case the number of matches between
backprojected points and image points is less than the threshold defined then Motion
based Tracking is said to be failed in estimating the pose hence the system shifts to
next method explained below.

BoW based Tracking
In case the Motion Based tracking fails the BoW based tracking comes into action.
BoW stands for Bag of Words, in this case bag of visual words. It indexes and converts
images into bag of word representations. Bag of visual words is the representation of
image that describes the occurrence of keypoint descriptor within the image. It looks
at the histogram of the kepoints within the image considering each descriptor count
as a feature This method implements the hierarchical tree for approximating nearest
neighbours in the image feature space using pretrained orb visual vocabulary. Then the
input frame is matched with the reference keyframes using this pretrained hierarchical
tree. The keypoints from the current frame is matched with that of reference frame,
corresponding landmarks are thus associated with the keypoints providing 3D-2D cor-
respondence. Once we have the 3D-2D correspondence pose can be estimated similar
to motion based tracking using Linear PnP. In case the number of bow matchs is below
the threshold this method is also discarded then the system goes for the last method
known as Robust Based Tracking.

44

Robust based Tracking
In the case that both motion based and BoW based tracking doesn’t estimate the pose
successfully, Robust based tracking is implemented. In method it uses Brute-Force
matcher to match the keypoints in the current frame and reference frame on the basis
of Hamming Distance between the BRIEF descriptors. It uses ratio test to select good
matches. Yet due to noise and various factors lot of outliers are present. Hence it uses
epipolar constraint[equation (3.10)] to select the inliers efficiently. The points are nor-
malised using camera matrix K. Then the essential matrix is computed using RANSAC
algorithm. For correspondence the points need to satisfy the epipolar constraint con-
taining Essential matrix. The points which doesn’t satisfy are considered as outliers.
The figure 4.6a shows the result of the use of BF matcher and the ratio test to select
good matches. As seen there are lot of outliers which is main reason estimating of false
pose. In figure 4.6b, the rejection of outliers with the help of epipolar constraint is
shown.

(a) Matches obtained after using BF matcher and ratio test

(b) Rejection of outliers using epipolar constraint

Figure 4.6: Effective 2D-2D correspondence estimation

From the 2D-2D correspondence between the current frame and the selected reference
frame the 3D landmarks of corresponding points in the reference frame can be asso-
ciated with the 2D points in current frame. Then the pose is estimated using Linear
PnP. In case the number of correspondence after outlier rejection is less than threshold
then all three method failed to carry out the localisation and system enters into the
Lost State. Then the flow is transferred to the relocalisation section to relocalise the
position of camera.

45

(a) Trajectory along with the point
cloud map generated

(b) The trajectory of the camera only

Figure 4.7: Tracking of the camera

Figure 4.7 shows the trajectory of the camera tracked by the tracking algorithm with
and without 3D landmarks. This trajectory is obtained by implementing above men-
tioned methods in the fr2 pioneer slam3 dataset which is standard TUM dataset.

4.3.3 Global Optimization module

This module does two main tasks: detecting the loop closure and applying global graph
optimization once loop is detected.

Loop detection
Loop here means, visiting the same part of map again which was already visited and
mapped before. Loop closure helps to reduce the error due to drifting of odometry data.
Loop candidates are searched by inquiring to the BoW database. Before inquiring, the
minimum score of BoW similarity between the current and each of the covisibilities is
computed. And the candidates having score less than minimum scores are selected as
loop candidates. If loop candidates are not found, loop correction cannot be done.

Global graph optimization
Global graph optimization is a form of graph optimization technique explained in 3.5.
During loop closure, a new edge is introduced into the graph which connect the two
nodes of entirely different time. So, graph optimization is applied globally in each and
every nodes to minimize the overall error.

4.3.4 Re-localization algorithm

Relocalization algorithm is a part of tracking module of OpenVSLAM. It is one of the
most important part of whole algorithm as it helps to find the absolute localization at
the beginning of localization process and also if the robot get lost in between.

46

Relocalization algorithm basically incorporates most the functionality used in three
localization algorithms explained above. Figure 4.8 shows the complete relocalization
algorithm. The flowchart is self-explanatory. It first finds the list of most probable
candidates i.e it chooses some keyframes from its database of keyframes which is most
close to the current frame, then it tries to find which of them is the closest one using
various metrics and threshold values as shown clearly in flowchart in figure 4.8

Figure 4.8: Relocalization Algorithm

47

4.4 Navigation

4.4.1 ROS Navigation Stack

ROS navigation stack is one of the major package that handles all the navigation
tasks from mapping the environment to path planning. Here, we have used a part of
navigation stack i.e move base package. This package was primarily developed to deal
with global as well as local path planning tasks. But, currently we are more concerned
with the global path planning than local one. So, for now, local path planning have
been ignored.

move base needs data in well defined form as shown in block diagram in figure 4.9.
It expects the ROS topics /odom, /map and ROS transform messages from map to
base footprint. The /odom topic which was primarily supplied by traditional odometry
sources such as IMU and wheel encoders are replaced by visual odometry supplied
by OpenVSLAM. The transform message from map to base footprint can together be
generated with /odom topic.

Figure 4.9: Modification in navigation stack

4.4.2 Occupancy grid map

The sparse map created by openvslam (using monocular camera) was projected to 2D
plane. Using photo editing software, the map was scaled to actual dimension using
dimension of the room.

As the map made using monocular camera lack the actual scale of the room, so these
maps need to be scaled to the size of actual room. This can be done by measuring the
actual dimension of the room and scaling up the map accordingly.
Here, Pixel distance =

√
2802 + 3802 = 472.016949

Actual measurement of room = 3.35 meter (11 feets)

48

Map resolution = 3.35/472.016949 = 0.0070972 meters/pixel
Map origin = (−500,−500) pixels = 0.0070972∗(−500,−500) m = (−3.548601,−3.548601)
m

Figure 4.10: Map scaling

Now, these maps are just suitable to work with ROS navigation stack and later used
for path planning purpose.

4.4.3 Scaling Odometry

The odometry information published by ROS node openvslam is completely based on
its pre-built 3D map of the room. But, as we know map built using monocular camera
lack scale information, hence odometry information also need to be scaled up to match
the scale version of occupancy grid map.

Figure 4.11: Scaling odometry information

49

Figure 4.11 shows the scale of a portion of 3D map built by openvslam. Here, a known
distance is measured in map scale and find its ratio to the actual dimension of the
room.
Readings in map = 0.10-(-0.06) = 0.16
Actual measurement of room = 3.35 meter (11 feets)
Scale factor = 3.35/0.16 = 21 (approx)

Now, every odometery topic generated by openvslam is scaled up by the factor of 21
to match it perfectly with the occupancy grid map.

4.5 Dynamic Obstacle Avoidance

Dynamic objects such as human beings, vehicles etc create problem while mapping and
tracking the pose of camera. Such objects are temporary on the scene and therefore
should not be included while mapping. In case of tracking the pose of camera is esti-
mated using the method of Linear PnP i.e. the correspondence between 3D-2D points
as explained in section 3.4.2. Since this method finds the correspondence between
two frames on the basis of BRIEF descriptor of the orb features(See section 3.2), the
matched feature points detected in consecutive frames will no longer be associated with
same 3D point in the space due to the movement of the dynamic object in the 3D space
This results in false 2D-3D correspondence thus leads to error in the pose estimation of
the camera. In more technical way, the keypoints from the dynamic objects should not
be considered. For this purpose, the mask of the dynamic objects needs to be created
before extracting the keypoint features.

Figure 4.12: Before mask-
ing

Figure 4.13: Mask Figure 4.14: After masking

The figures 4.12, 4.13, 4.14 demonstrate the use of masking for keypoints extraction.
The figure 4.12 contains the keypoints features from whole image even from dynamic
objects, such as human beings. Such points need to be excluded. For removing key-
points from the scene, at first the mask of dynamic object is created as shown in figure
4.13. The mask in figure 4.13 is blackened for dynamic objects and whitened for other
scenes. Finally, with the help of mask, the keypoints of only static objects are obtained
as shown in figure 4.14 and only those points used in further computations.

50

4.6 Mask Generation Using ICNet

For generation of human segmentation mask, ICNet was taken as final choice for the
masking. For finalizing the mask, speed vs mIOU trade off between different models
were taken into consideration. The repository ”https://github.com/thuyngch/Human-
Segmentation-PyTorch”, gives the pretrained human segmentation models.

4.6.1 Model Comparison

Various pretrained models given in the repository were inferenced with the Automatic
Portrait Segmentation for Image Stylization (APSIS) dataset (total of 1531 images) to
see the speed and mIOU trade off. As seen from the figures 5.3, it can be seen that
even the presence of mask improves the tracking error. However TUM dataset does not
contain the ground truth label of semantic segmentation, hence actual mIOU can not
be computed. In order to account this, APSIS dataset containing the segmentation
label are inferenced using all the available models provided in the repository he so
as to have detail mIOU and speed comparison of models. (whose result can be seen
in second column of table 5.3). From there it is clear that ICNet provides the best
inference speed for our work on CPU based system.

4.6.2 Custom Dataset Generation

After ICNet was fixed as segmentation model, custom dataset was generated in order
to improve the segmentation capacity. Our custom dataset is based on walking of
person (focused on leg of human being since it mainly falls on the field of vision of
robot). The video was taken for person(or persons) walking on multi environment at
various lighting condition. For the validation set, inner building of Locus Office has
been taken. The necessary video was converted to the sequences of images. In total,
multi environment walking dataset consists of 1435 images divided and validation set
consists of 1350 images.

For custom dataset, both labels and raw data are required. As the labels are not avail-
able, the required labels were created by instance segmentation of using the pretrained
model of R50-FPN given in detectron2 model zoo.
(reference: https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-
InstanceSegmentation/mask rcnn R 50 FPN 3x.yaml)

The code has been modified to generate the binary mask output from instance seg-
mentation.

The models trained for human segmentation were compared based on their speed and
accuracy. ICnet was chosen due to the fast speed on the CPU inference speed. To
further improve the accuracy of segmentation, it was fine tuned on our custom multi
environment walking dataset.

51

https://drive.google.com/drive/folders/1DkNAshuyHu53fsN8Y8Q5BbJsZsYM1cEa?usp=sharing
https://drive.google.com/drive/folders/1hVybd-ElaafpQWXBtuEYSUApeJVHN8YX?usp=sharing

4.6.3 ICNet Training and Freezing of layers

Multi environment dataset is small due and can overfit the ICnet model, hence the
feature extracting backbone was frozen during fine tuning on the dataset. This results
in only about 400K trainableparameters from total of 11.4M parameters.

4.7 Mobile Robot

Figure 4.15: Differential Drive Mobile Robot(Model:Turtlebot1)

For the purpose of testing in real environment, we have used the differential drive
mobile robot. The microcontroller receives the command velocity from the Raspberry
Pi and converts it into the respective wheel velocity in order to achieve the required
motion.

We have reconditioned the turtlebot with our own circuits as shown in figure 4.15.

52

The radius and length of wheel base of the turtlebot was measured and found to be,
L = 26.15cm
r = 3.15cm
Hence from equation (3.37) using the above parameters and the received linear and
angular velocity for robot the respective wheel velocities are computed and required
motion of robot is obtained.

53

5 RESULT

5.1 In standard datasets

We have tested our method in standard TUM datasets [TUMdataset] and analysed
its efficiency with certain error metrices and visualising the trajectories and plots.
The Standard datasets that we have used can be categorised into Static and Dynamic
Environments.

5.1.1 Static Environment datasets

For static environment we have tested on following datasets [16]

• fr2 desk

• fr2 pioneer slam3

In fr2 desk dataset camera is moved around the two tables such that the loop is closed.
Whereas the fr2 pioneer slam3 is the dataset recorded from a Kinect mounted on top
of a Pioneer robot.

(a) fr2 desk Dataset (b) fr2 pioneer slam3 Dataset

Figure 5.1: Estimated Trajectory Plot along with ground truth for Static Environment
dataset

54

(a) fr2 desk Dataset (b) fr2 pioneer slam3 Dataset

Figure 5.2: Relative translational error for Static Environment dataset

Metric fr2 desk fr2 slam3
Average RMS error(m) 0.097710 0.101926
Relative Translational er-
ror(m)

0.129474 0.028162

Relative Rotational er-
ror(deg)

14.376855 1.059033

Table 5.1: Error obtained on the static environment datasets

The estimated trajectories of both sattic dataset has been shown in the figure 5.2. The
rms error obtained in the case of fr2 desk dataset is 9.7710 cm whereas that in case of
fr2 pioneer slam3 is found to be 10.1926cm. The relative translational and rotational
error has been tabulated in table 5.1.

5.1.2 Dynamic Environment datasets

In case of Dynamic environments we have tested on two datasets [16]

• walking xyz

• walking rpy

The walking xyz is the dataset in which camera has been moved along three directions
with same orientation whereas Walking xyz is the dataset in which camera has been
rotated along principal axis (roll, pitch and yaw) at same position. Hence the effect
of translation and rotation both can be analysed using above datasets. These datasets
are for the dynamic environment where people are moving. As explained in section
4.5 the visual features keypoints from the dynamic objects are to be ruled out. The
results of cases when dynamic objects are not considered and the case when masking
is carried out in order to take dynamic objects into account are summarized below in
figures 5.3, 5.4, 5.5 and 5.6.

55

(a) Without Mask (b) With Mask

Figure 5.3: Estimated Trajectory Plot along with ground truth for Walking xyz dataset

(a) Without Mask (b) With Mask

Figure 5.4: Relative Translational Error Plot for Walking xyz dataset

(a) Without Mask (b) With Mask

Figure 5.5: Estimated Trajectory Plot along with ground truth for Walking rpy dataset

56

(a) Without Mask (b) With Mask

Figure 5.6: Relative Translational Error Plot for Walking rpy dataset

The effect of using mask on the dynamic object can be clearly seen on the plots of
trajectory and relative pose error. For further numerical analysis various metrices has
been tabulated below,

Metric
Walking xyz Walking rpy

Without
Mask

With Mask Without
Mask

With Mask

Average RMS er-
ror(m)

0.237222 0.0179716 0.514982 0.039883

Best Case RMS er-
ror(m)

0.188568 0.015409 0.470009 0.037272

Relative Transla-
tional error(m)

0.1569966 0.022598 0.3059184 0.0511032

Relative Rotational
error(deg)

3.0934894 0.6158846 6.0403042 1.1446668

Table 5.2: Error obtained on the dynamic environment datasets

In case of tracking without the use of mask the absolute rms error in the estimated tra-
jectory and the ground truth trajectory were found to be 23.722cm and 51.4982cm
in xyz and rpy datasets respectively. Whereas in case of implementation of mask the
error drastically reduced to 1.79716cm and 3.9883cm respectively as shown in table
5.2. Since the tracking is relative to initial pose and new pose is estimated with respect
to that, and previously computed 3D points in the map being generated the perfor-
mance of algorithm is variable. The above data is the average error obtained from few
iteration on the same dataset. The error in the best case scenario has also been listed
in the table. Beside that the relative error in the translation and rotation(orientation)
of the camera also has been included in the table 5.2.

The above metric is based upon the use of ICNet Mask. The use of other masking
techniques such as DeepLab, Unet, CenterMask leads to better accuracy but on the
cost of high computational time. Hence the trade off between speed and accuracy has
to be made which is further illustrated in section 5.4.

57

5.2 In real world

5.2.1 Mapping

A complete 3D map of room was created using methodology described in 4.3.1. The
mapping was done using monocular camera setup. Results of the mapping is shown
in figure 5.7. The map basically stores the 3D landmarks, which are actually the orb
features of the keypoints in sequence of frames.

Figure 5.7: 3D map of the room

In figure 5.7, black dots represents the 3D landmarks and purple lines represents the
cameras poses during the mapping process. As you can see in the figure 5.7, there
are sufficient landmarks(3D points) on two sides of the room and other two sides has
very less points. This is due to the fact that, orb feature works well only in textured
environment. As, two sides of room had plane walls, less number of 3D points was
extracted there.

Figure 5.8 shows the occupancy grid maps of single room and of whole flat. Occupancy
grid map was generated as described in 4.4. These occupancy grid map can be directly
used with ROS navigation stack to carry out path planning.

58

(a) Single room (b) Whole flat

Figure 5.8: Occupancy grid maps

5.2.2 Localization

The real life localization was tested in the map formed above. We found localization
accuracy has been greatly affected by lightning condition. When localization was done
right after mapping the environment, the accuracy was good as there was no significant
change in lightening condition. But, when it was tried in different lightening conditions,
accuracy was greatly reduced and there was lots of localization failures.

There was no ground truth to quantify the localization accuracy. But we infer it by
comparing the motion of camera and localization results given by openvslam. Figure
5.9 shows the odometry information about the camera movement by red arrows. We
have moved the camera in similar fashion, so it can be concluded that it is pretty good
localization accuracy.

59

Figure 5.9: Localization result

Figure 5.9 shows the localization results right after mapping the environment. Still,
we can see some imperfections in the odometry. The localization accuracy was tested
in different lightening conditions. Following are some results of localization testing:

• Localization right after mapping

• Localization in similar lighting condition

• Localization in different lighting condition

5.2.3 Navigation

Path planning was done using ROS navigation stack as explained in 4.4. Figure 5.10
shows the path planning algorithm in action. Here, long red arrow represents the
final goal, black line represents planned path, red line represents planned path at the
beginning of the algorithm and short red arrows represents odometry information.

60

https://drive.google.com/file/d/144rz8VZcJo78WzudtyNhv8vMnFMUuSjd/view?usp=sharing
https://drive.google.com/file/d/11AgFtvRTo-E-8e3vHg2sDmbcJxh8ZumP/view?usp=sharing
https://drive.google.com/file/d/13dlTpPBxFAvhzGiBhAucTJ6yuam_OpSe/view?usp=sharing

Figure 5.10: Path planning in pre-built map

5.3 Fine-tuning ICNet

The training log of the ICNet can be seen using the tensorboard log in figure 5.11.
94th training epoch model was selected for masking purpose, as it has the lowest loss
value and high miou on the validation (locus office dataset). On further training, the
miou of training keeps increasing but validation starts to decrease due to over-fitting.

(a) miou vs training epoch
(b) Loss vs training epoch

Figure 5.11: Loss and mIOU progression during fine-tuning

61

5.4 Comparison Between Masking Techniques

There can be various techniques to generate the masks. According to subsection 3.7.1,
panoptic segmentation is slowest one and semantic segmentation is the fastest one.
Instance segmented mask are generated via popular MRCNN methods [8], Faster-
RCNN methods [14], detectron2 [18]. However these methods are slow and far away
from the real time inference.

Semantic segmentation is faster than instance segmentation since, each class is not
further instantiated. Semantic Segmentation models such as [20], [3] [15] were tested.
The selected choice of the semantic models were based on the fact that these models
focused on real time inference rather than the accuracy.

The detail comparison results of masking schemes using given pre-trained models and
our fine tuned ICNet model can be seen in table 5.3 and in figures 5.12, 5.14, 5.13 and
5.15. These shows that the masking result for UNet and DeeplabV3Plus are detailed
and finer compared to those of ICNet and BiSeNet. The second image shows that gap
between two legs are distinct in DeepLabV3Plus and UNet, but are considered as lump
mask in ICNet and BiSeNet.

However, the 5.14 shows that, even though it is trained for human, DeepLabV3Plus
and UNet try to mask the stationary vase which we do not want to be masked.

Even though the masking result seem obviously better for the other models compared
to the ICNet, the speed comparison table 5.3 clearly shows its advantage regarding
the speed which is basis for our CPU based system. That is, all inference results were
carried out on computer of Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
CPU. (CPU only, no GPU).

The trade off result of speed vs mIOU are summerized in figure 5.16.

(a) Ground Truth (b) ICNet Masking (c) BiSeNet

(d) DeepLabV3Plus Mask (e) UNet Mask (f) Epoch 94, Custom
Model Mask

Figure 5.12: Masking Results on Multi environment walking dataset

62

(a) Original Image (b) ICNet Overlay (c) BiSeNet Overlay

(d) DeepLabV3Plus Over-
lay

(e) UNet Overlay (f) Epoch 94, Custom
Model Overlay

Figure 5.13: Overlay Results on Multi environment walking dataset

(a) Ground Truth (b) ICNet Masking (c) BiSeNet Masking

(d) DeepLabV3Plus Mask (e) UNet Mask (f) Epoch 94, Custom
Model Mask

Figure 5.14: Masking Results on Multi environment walking dataset

63

(a) Original Image (b) ICNet Overlay (c) BiSeNet Overlay

(d) DeepLabV3Plus Over-
lay

(e) UNet Overlay (f) Epoch 94, Custom
Model Overlay

Figure 5.15: Overlay Results on Multi environment walking dataset

Dataset & Methods
Validated on Locus Office Dataset APSIS
mIOU(%) FPS mIOU (%) FPS

ICNet 80.08 26.51525 83.69 20.90771
BiSeNetv1 84.09 13.71467 84.03 12.52348
DeepLabV3plus 88.77 7.28928 84.84 6.67264
UNetPlus 82.59 5.58920 84.34 7.57311
ICnet fine-
tuned(ours)

83.27 24.03161 77.63 26.21884

Table 5.3: Inference Speed mIOU Comparison of Segmentation Models

(a) Speed vs mIOU validated on Locus Of-
fice Dataset (b) Speed vs mIOU validated on APSIS Dataset

Figure 5.16: Speed vs Accuracy Comparison of Models

64

6 FUTURE ENHANCEMENT

There are lots of possible areas which can be enhanced in future. The project is mainly
focused on the indoor environment and we have considered mainly human beings as the
dynamic objects in case of dynamic environment. The possible future enhancement in
the project is to develop system that will be robust for both indoor as well as outdoor
environment.

The technique used is affected by the lighting variations. Accuracy is reduced while
performing localization in different lighting condition than it was while mapping. The
system that is robust and can operate well in any lighting condition can be possible
future enhancement of this project. The system works poorly in case it encounters the
environment where the feature points are minimal such as texture less plain wall. In
such environment the robot gets lost frequently and mapping of such environment is
difficult. Hence the system can be improved to work in such texture less environments.

Also, instead of just considering just humans as dynamic objects, motion segmentation
technique can be used to segment all the moving objects in case of moving camera.

65

7 CONCLUSION

There is a trade-off between processing power and price of sensor. Cheaper the price
of sensors, larger the processing power needed to achieve the same accuracy. In this
project an effort have been made to increase the accuracy of mapping using cheap
sensor (i.e camera) and lowest processing power as possible. The accuracy achieved in
localization was not revolutionary, and cannot be directly implemented in products.
The accuracy might have increased drastically if expensive sensors such as 3D lidars
and RADARS was used or high end GPUs were used to increase the processing power.
Most of today’s state of art system like self driving cars, autonomous drones, food
delivery robots by amazon etc. uses lidar technology and fusion of multiple sensors to
achieve highest possible accuracy.

But the goal of this project was not to achieve best localization accuracy, rather to
develop an best algorithm which can perform well with cheap sensors and low processing
power. So, it can be concluded that the project has been able to achieve its objectives.

66

REFERENCES

[1] Berta Bescos et al. “DynaSLAM: Tracking, Mapping and Inpainting in Dynamic
Scenes”. In: 3 (July 2018), pp. 1–1. doi: 10.1109/LRA.2018.2860039.

[2] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source Library for Vi-
sual, Visual-Inertial and Multi-Map SLAM”. In: arXiv preprint arXiv:2007.11898
(2020).

[3] Liang-Chieh Chen et al. “Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation”. In: ECCV. 2018.

[4] Dimo Chotrov et al. “Mixed-Reality Spatial Configuration with a ZED Mini
Stereoscopic Camera”. In: Nov. 2018.

[5] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-SLAM: Large-Scale
Direct Monocular SLAM”. In: Computer Vision – ECCV 2014. Ed. by David
Fleet et al. Cham: Springer International Publishing, 2014, pp. 834–849. isbn:
978-3-319-10605-2.

[6] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. 2nd ed. USA: Cambridge University Press, 2003. isbn: 0521540518.

[7] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[8] Kaiming He et al. Mask R-CNN. 2018. arXiv: 1703.06870 [cs.CV].

[9] Mathieu Labbé and François Michaud. “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale and long-
term online operation”. In: Journal of Field Robotics 36.2 (2019), pp. 416–446.
doi: https://doi.org/10.1002/rob.21831. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/rob.21831. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/rob.21831.

[10] Youngwan Lee and Jongyoul Park. CenterMask : Real-Time Anchor-Free In-
stance Segmentation. 2020. arXiv: 1911.06667 [cs.CV].

[11] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics
31.5 (2015), pp. 1147–1163. doi: 10.1109/TRO.2015.2463671.

[12] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An Open-Source SLAM System
for Monocular, Stereo, and RGB-D Cameras”. In: IEEE Transactions on Robotics
33.5 (2017), pp. 1255–1262. doi: 10.1109/TRO.2017.2705103.

[13] Adam Paszke et al. ENet: A Deep Neural Network Architecture for Real-Time
Semantic Segmentation. 2016. arXiv: 1606.02147 [cs.CV].

[14] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

67

http://dx.doi.org/10.1109/LRA.2018.2860039
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1703.06870
http://dx.doi.org/https://doi.org/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
http://arxiv.org/abs/1911.06667
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1505.04597

[16] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”.
In: Proc. of the International Conference on Intelligent Robot Systems (IROS).
Oct. 2012.

[17] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. “OpenVSLAM: A Versa-
tile Visual SLAM Framework”. In: Proceedings of the 27th ACM International
Conference on Multimedia. MM ’19. Nice, France: ACM, 2019, pp. 2292–2295.
isbn: 978-1-4503-6889-6. doi: 10.1145/3343031.3350539. url: http://doi.
acm.org/10.1145/3343031.3350539.

[18] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2.
2019.

[19] Changqian Yu et al. BiSeNet: Bilateral Segmentation Network for Real-time Se-
mantic Segmentation. 2018. arXiv: 1808.00897 [cs.CV].

[20] Hengshuang Zhao et al. ICNet for Real-Time Semantic Segmentation on High-
Resolution Images. 2018. arXiv: 1704.08545 [cs.CV].

[21] Hengshuang Zhao et al. Pyramid Scene Parsing Network. 2017. arXiv: 1612.

01105 [cs.CV].

[22] Bolei Zhou et al. Object Detectors Emerge in Deep Scene CNNs. 2015. arXiv:
1412.6856 [cs.CV].

68

http://dx.doi.org/10.1145/3343031.3350539
http://doi.acm.org/10.1145/3343031.3350539
http://doi.acm.org/10.1145/3343031.3350539
https://github.com/facebookresearch/detectron2
http://arxiv.org/abs/1808.00897
http://arxiv.org/abs/1704.08545
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1412.6856

A APPENDIX: LINEAR ALGEBRA

A.1 Singular Value Decomposition

Singular Value decomposition also called SVD is one of most useful tools in compu-
tation of computer vision problems. SVD decomposes a matrix A into three separate
components U, D and V T .

A = UDV T

Here,
U and V are column orthogonal matrix
D is the diagonal matrix

The U and V matrix have the property that all the columns are perpendicular to each
other i.e. the dot product between any two columns is eqal to 0. And the dot product
of a column with itself is equal to 1.

‖Ui‖ = 1 and UT
j Ui = 0, fori 6= j

The D being the diagonal matrix is a singular value matrix haing diagonal elements as
the singular values.

D = diag{σ1, σ2,, σn} where σ1 ≥ σ2 ≥ ≥ σn

The rank of the A is equal to the number of non zero singular values. The rank of a
matrix m × n must be less than or equal to min(m, n). It can be understood as the
dimension of vector space spanned by its rows or columns.
Suppose the rank of A is equal to k, then the first k columns of U, provide an or-
thonormal basis for the column space of A. Similarly, the first k rows of V T , provide
an orthonormal basis for the row space of A. The most important property that will
be used to solve the least square problems is that the last columns of V , or the last
rows of V T , provide an orthonormal basis for the null space of A.

null(A) = Vk:n where A is matrix of size m× n and k is rank of matrix A

The null space of a matrix is the set of vectors that are mapped to origin by that
matrix. The above property can be proved as below,
Suppose vector x is represented as the linear combination of last n-k columns of the V,

~x =
n∑

i=k+1

wi~vi

We need to show that ~x is the null space of A i.e, A~x = 0

A~x = A
n∑

i=k+1

wi~vi

or, A~x =
n∑

i=k+1

wi(A~vi)

69

Here, the term A~vi = (UDV T)~vi = UD(V T ~vi)
Since ~vi is orthognal with all row of V T except the ith row, the resultant of (V T ~vi) is
the vector consisting all 0 elements except the ith element which is 1. Since the rank
of A is equal to k, D has non zero elements uptokth row or column and i ranges from
k+1 to n. Hence,

D(V T ~vi) = 0

Therefore,
A~vi = UD(V T ~vi) = 0

Thus,

A~x =
n∑

i=k+1

wi(A~vi) = 0

So we conclude that ~x i.e, the last(n-k) columns of V is the null space of matrix A.

A.2 Least Square Problem

The method of least squares is a standard approach in regression analysis in order
to approximate the solution of overdetermined systems. The system where no. of
equation is greater than no. of unknowns. There are two types of least square problem

min
x
||Ax− b||2 with ||b|| 6= 0

and,
min
x
||Ax||2 s.t. ||x|| = 1

The first type of least square problem can be understood with the example of line
fitting in 2D space. Suppose points(xi, yi) in the 2D space. We require to fit the line
that best represent those points given by y = cx + d. The error for a single point is
given by Ei = |yi − cxi − d|. Hence the total line fitting error is given by the sum of
square of those error

E =
N∑
i

(yi − cxi − d)2

The goal is to estimate parameter c and d such that the error is minimum. This
problem can be rewritten in form of least square problem as below

E =

∥∥∥∥∥∥∥∥

y1

.

.
yN

−

x1 1
. .
. .
xN 1

[cd
]∥∥∥∥∥∥∥∥

2

= ‖b− Ax‖2

Hence given b and A we require to compute x = [c d]T .If we have only one point then
we have infinite solution. Infinite number of line can be drawn passing through a single
point. In case we have exactly two points then the solution is unique as only single line
exist that pass through two points and error would be zero. Now if we have multiple

70

points then we cant have a single line that satisfy Ax =b constraint. Hence we try to
find the line that minimizes the error.

E = (b− Ax)T (b− Ax) = bT b− 2bTAx+ xTATAx

taking derivative of the error w.r.t x and equating to 0

∂E

∂x
= −2bTA+ 2ATAx = 0

or, ATAx = bTA

or, x = (ATA)−1bTA

or, x = (ATA)−1AT b

This term (ATA)−1AT is known as pseudoinverse of matrix A.

If A be matrix of size m × n, general solutions to the least square problem can be
summarised as below:

• rank(A) = r < n: Then we have infinite number of solutions. The solution is
computed by taking inverse of A and all possible linear combination in null space
of A is added to it.

x = V D−1UT b+ λr+1Vr+1 ++ λnVn

where A = UDV T and V = [V1,, Vn]

• rank(A) = n: Then we have exact solution given by

x = A−1b

• n < m: In case if no of unknown is less than the constraints we don’t have exact
solution in general so,

min
x
‖Ax− b‖2 → x = (ATA)−1b

Now, for second type of least square problem of type Ax = 0 i.e. we minimize the
quantity ‖Ax‖. Let us again consider the line fitting problem but in this case we
consider the perpendicular distance between points and line as error instead of vertical
distance. This can be done by representing line in homogeneous coordinate as ex +
fy + g = 0 and points are reprensented by (x,y,1). The dot product between point
and the line gives the scaled perpendicular distance. Hence the line fitting error can
be represented as,

E = (ex1 − fy1 − g)2 ++ (exN − fyN − g)2 =
N∑
i

(exi − fyi − g)2

71

or, E =

∥∥∥∥∥∥∥∥

x1 y1 1
. . .
. . .
xN yN 1

ef
g

∥∥∥∥∥∥∥∥

2

= ‖Ax‖2

The problem is
min
x
‖Ax‖2 subject to ‖x‖ = 1

The solution to this problem is given by

x = V3, where SVD of A is given byA = UDV T , V =
[
V 1 V 2 V 3

]
In summary,

• rank(A) = r < n − 1: Then we have infinite number of solutions. The solution
is any linear combination of vector in the null space of A.

x = λr+1Vr+1 ++ λnVn where
n∑

i=r+1

λ2
i = 1

• rank(A) = n − 1: Then we have one exact solution given by the column in the
null space.

x = Vn

• n < m: In this case when no of unknown is less than constraints, we don’t have
exact solution in general. The vector that minimizes the norm is also the last
column of V so,

min
x
‖Ax‖2 → x = Vn

A.3 RANSAC

Ransac also known as Random Sample Consensus is the method used to reject the
outliers. Suppose the third case least square problem of the type ‖Ax = 0‖ where the
no of unknowns is less than the constraints. In such case we find the solution that
incorporates all the data points by minimizing the error. But in case of presence of few
outliers the solution may result in drastic deviation from the ground truth. The least
square problem is very sensitive to the outliers. Hence before fitting the solution over
all the data we first remove certain data points(outliers). This is achieved using Ransac
algorithm. The strategy is to find the model that accords with maximum number of
samples. As the name suggest we first randomly sample certain group from the whole
data. The number of data in the group is the minimum number of data required in
case of least square problem it is equal to the number of unknown. Using those data
we obtain the solution. Then we measure how good the solution is in accordance with
other data. On the basis of certain threshold the inliers are selected. We again choose

72

another group and carry out same process. We iterate for fixed number of times and the
solution which incorporates maximum number of inliers is chose to be optimal solution
and the data that doesn’t satisfy the obtained solution is considered as outliers. Like
this RANSAC helps in optimizing the least square problems.

The number of times we need to sample depends upon the no of data, technically the
probability of inliers. Suppose Probability of choosing inlier = w = no of inliers

no of samples
then,

Probability of building correct model is wn, where n is no of samples to build a model.
Probabilty of not building a correct model during k iterations is (1−wn)k = 1− p,

where p is desired RANSAC success rate. Hence no of iteration k = log(1−p)
log(1−wn)

This is
estimated empirically looking at probability of inlier.

73

B APPENDIX: PROBABILITY THEORY

B.1 Bayes Theorem

Bayes theorem is based on the fact that new information doesn’t create new belief, it
just updates the prior belief.

PriorBelief +NewInformation = PosteriorBelief

Consider an example, In a city, 90% of people are farmers and 10% are teachers. If
you choose a person in random, is the person more likely to be farmer or teacher?

Answer to this question is straight forward, there are 9 times more farmers than teacher,
so randomly picked person is more likely to be a farmer. Here, our prediction is only
based on our prior belief.

Now, we add additional information to our belief. Suppose, 50% of teacher loves to
read book and only 10% of farmers love to read book. Now, if a randomly selected
person loves to read book, is he more likely to be farmer or teacher?

Answer to this question is a bit tricky. If a person loves to read book then it seems
that he/she is more likely to be teacher than farmer. But, we shouldn’t ignore the fact
that there are 9 times more farmers in the city than teachers.

Lets solve this numerically, Suppose there are 100 people in the city.
So,
No. of farmers = 0.9 ∗ 100 = 90
No. of teachers = 0.1 ∗ 100 = 10
No. of farmers who read book = 0.1 ∗ 90 = 9
No. of teachers who read book = 0.5 ∗ 10 = 5
Total no. of people who read book = 9 + 5 = 14
So,
Prob. of person being farmer = 9/14 = 0.64
Prob. of person being teacher = 5/14 = 0.36

Hence, if randomly selected person reads book, he is still more likely to be a farmer.

Here,

Prob(X is farmer given he reads book) =
Prob(Farmer reads a book) ∗ Prob(X is a farmer)

Prob(X reads a book)

In more general term,

P (X|Y) =
P (Y |X) ∗ P (X)

P (Y)
(B.1)

74

This is called Bayes Theorem.
Where,
P (X|Y) is posterior probability
P (X) is prior probability
P (Y |X) is information

75

	PAGE OF APPROVAL
	COPYRIGHT
	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS / ABBREVIATIONS
	INTRODUCTION
	Background
	Mapping, Localization and Path planning
	Simultaneous Localization and Mapping
	Problem with dynamic environment
	Problem with change in lightning

	Objectives
	Scope of the Project

	LITERATURE REVIEW
	Visual SLAM
	Dynamic Object Detection

	THEORETICAL BACKGROUND
	Image Formation
	Camera Model
	Pinhole Camera Model
	Camera Projection

	Visual Features
	ORB Features

	Multiview Geometry
	Fundamental Matrix
	Essential Matrix
	Triangulation

	Pose Estimation
	Pose from 2D correspondence
	Pose from 2D-3D Correspondence(Linear PnP)
	Pose from 3D-3D Correspondence(Procrustes Problem)

	Graph Optimization
	Introduction
	Maximum Likelihood Estimation
	Optimization
	Application

	Graph based SLAM with Landmarks
	Modelling Graph

	Image Segmentation
	Types of Image Segmentation

	Metrics used for Image Segmentation
	Pixel Accuracy
	Mean Intersection Over Union (mIOU)
	Dice Coefficient

	Theoretical Knowledge before Segmentation Model
	ResNet
	Skip Connection
	ResNet as Backbone

	Dilated Convolution
	Instance Segmentation Model
	MaskRCNN

	Semantic Segmentation Model
	PSPNet
	Internal Architecture of PSPNet

	ICNet
	Internal Architecture of ICNET
	Lowest Resolution Branch
	Medium Resolution Branch

	High Resolution Branch
	Cascade Label Guidance

	Differential Drive Model

	METHODOLOGY
	General Setup
	ROS environment setup
	OpenVSLAM
	Mapping module
	Tracking module
	Global Optimization module
	Re-localization algorithm

	Navigation
	ROS Navigation Stack
	Occupancy grid map
	Scaling Odometry

	Dynamic Obstacle Avoidance
	Mask Generation Using ICNet
	Model Comparison
	Custom Dataset Generation
	ICNet Training and Freezing of layers

	Mobile Robot

	RESULT
	In standard datasets
	Static Environment datasets
	Dynamic Environment datasets

	In real world
	Mapping
	Localization
	Navigation

	Fine-tuning ICNet
	Comparison Between Masking Techniques

	FUTURE ENHANCEMENT
	CONCLUSION
	REFERENCES
	APPENDIX: Linear Algebra
	Singular Value Decomposition
	Least Square Problem
	RANSAC

	APPENDIX: Probability theory
	Bayes Theorem

