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Abstract

With the widespread use of NeRF-based implicit 3D rep-
resentation, the need for camera localization in the same
representation becomes manifestly apparent. Doing so not
only simplifies the localization process – by avoiding an
outside-the-NeRF-based localization – but also has the po-
tential to offer the benefit of enhanced localization. This
paper studies the problem of localizing cameras in NeRF
using a diffusion model for camera pose adjustment. More
specifically, given a pre-trained NeRF model, we train a dif-
fusion model that iteratively updates randomly initialized
camera poses, conditioned upon the image to be localized.
At test time, a new camera is localized in two steps: first,
coarse localization using the proposed pose diffusion pro-
cess, followed by local refinement steps of a pose inversion
process in NeRF. In fact, the proposed camera localization
by pose diffusion (CaLDiff) method also integrates the pose
inversion steps within the diffusion process. Such integra-
tion offers significantly better localization, thanks to our
downstream refinement-aware diffusion process. Our ex-
haustive experiments on challenging real-world data val-
idate our method by providing significantly better results
than the compared methods and the established baselines.
Our source code will be made publicly available.

1. Introduction
Visual localization is the process of determining the po-

sition of a camera within a known scene. It is a cru-
cial component for a wide range of applications, includ-
ing autonomous vehicle navigation, mobile robotics, aug-
mented reality, and Structure-from-Motion (SfM). In the
past decades, localization techniques have been intensively
investigated for various types of data, such as 3D point
clouds [1], SfM maps [2], and posed images [3]. How-
ever, solutions tailored for implicit scene representations,
like Neural Radiance Fields (NeRF), have received rela-
tively limited attention.

NeRF [4] and its variants [5–8], learn the structure of

Figure 1. Visual Localization using CaLDiff in a challenging
environment. Green camera represents the ground truth pose,
Blue represents the pose estimation by CaLDiff algorithm, Red
camera represents pose estimation by hierarchical localization
(DISK+lightglue) algorithm. Results from Empty Rooms dataset.

a scene from pose-annotated image collections, capturing
complex 3D structures and high-fidelity surface details.
Unlike traditional 3D scene representations, NeRF offers
a compact solution, encapsulating the entirety of a scene
without auxiliary data such as images, point clouds, or 3D
meshes. This standalone capability and the accuracy of
NeRF make it a desirable support for applications in vari-
ous fields. Given this context, the relevance of robust visual
localization within NeRF-based reconstruction becomes in-
creasingly apparent. While some approaches have been de-
veloped to refine a camera localization in a NeRF given a
rough estimate of its pose [9–11], few techniques have ad-
dressed the particular problem of visual localization of a
query image in a trained NeRF model without any prior. For
this use case, existing solutions designed for different rep-
resentations cannot be directly applied without major data
pre-processing or additional information. To cope with this
limitation, in this paper, we aim to develop a had-doc ap-
proach, taking advantage of the specificity of NeRF to per-
form a robust and accurate 6DoF camera localization.

In particular, we propose to leverage the image synthesis
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capability of NeRF to train a diffusion model conditioned
upon a query image to be localized in the scene. After
training such a model using image-pose pairs, the local-
ization is achieved by randomly spreading particles (cam-
era pose candidates) in the scene and iteratively refining
them through the diffusion model in order to provide a
close estimate of the actual camera pose used to condition
the diffusion model. Unlike competing feature-based tech-
niques [2], this direct localization strategy is particularly ef-
fective under challenging conditions such as low-texture en-
vironments, making our technique desirable for indoor sce-
narios (see Figure 1). Moreover, such kind of scene-specific
localization technique [12] is particularly well-suited for
NeRF, which is also trained on a single scene.

While our diffusion itself is able to provide a reliable
estimate of the camera pose, it’s accuracy remains limited.
To address this issue and improve its convergence, we pro-
pose to include a final refinement process via a differen-
tiable photometric registration method called iNeRF. After
the diffusion of each particle is achieved, most of them con-
verge to the query image’s location. Finally, given their
photometric errors, the top-n particles are used as an ini-
tialization to be refined via iNeRF.

Through a large set of experiments, we highlight that
this approach not only simplifies the visual localization in
a NeRF but also drastically improves the robustness of the
pose estimation process by a large margin when tested on
challenging indoor scenes where state-of-the-art hierarchi-
cal localization techniques typically fail.

This work makes the following contributions:

• We propose a novel method to localize images in the
neural radiance field, without requiring any initializa-
tion, whatsoever. The proposed method uses a pose
diffusion model to iteratively search the optimal pose.

• Our pose diffusion process is aware of the downstream
refinement. We enable this capability by integrating
the pose inversion steps within the diffusion process.

• CaLDiff has a significant advantage over the feature-
based hierarchical localization approach, especially for
challenging environments like poorly textured scenes.

2. Related Works
Visual localization enables the estimation of a camera’s

orientation and position within a known mapped environ-
ment [13]. The scale and nature of the map utilized for lo-
calization can vary significantly depending on the use case.
While context-specific maps, such as road maps [14], have
been investigated, the most general framework involves a
prior 3D reconstruction from structure-from-motion tech-
niques [15]. In this work, we investigate another medium
in which a camera can be localized, namely, a NeRF. This

section will introduce the most common localization tech-
niques in explicit 3D representation, followed by emerging
strategies to precisely localize a camera from a single query
image within an implicit scene reconstruction.

Traditional Visual Localization The localization pro-
cess can operate at varying levels of granularity, providing
either an approximate position of the camera or an exact
6DoF pose estimate. The most effective and accurate tech-
niques employ a hierarchical strategy [2], where the local-
ization is approached in two successive and complementary
steps: initially, a coarse localization is achieved using an
image retrieval method [3] to narrow the search range. This
is followed by a fine pose estimation, which involves a lo-
cal descriptor-matching strategy [16–18]. While these ap-
proaches have demonstrated relevance in challenging out-
door environments [19], their accuracy remains limited in
indoor, textureless environments [20]. In contrast, end-to-
end deep learning-based approaches, such as PoseNet [12],
have shown better resilience under such conditions. How-
ever, these solutions are known to be significantly less accu-
rate than their keypoint-based counterparts. Moreover, they
have the disadvantage of being scene-dependent, meaning
that a new network needs to be trained for every new scene.
While this could be a limitation in a general setup, it does
not pose a significant problem in the particular context of
NeRF, as this type of representation is also scene-dependent
and requires prior training. Nonetheless, such end-to-end
techniques remain rarely used in practice due to their lack
of accuracy and explainability. In this paper, we proposed
a more advanced approach using diffusion-based pose esti-
mation designed for NeRF that demonstrates better robust-
ness and accuracy than existing techniques under complex
scenarios.

Pose refinement in NeRF Pose estimation solutions have
been proposed from the early stage of 3D scene neural
representation. Many of them, such as self-calibrating
NeRF [10] have been mainly designed to deal with inac-
curate pose initialization during NeRF training. These tech-
niques ensure the convergence of the implicit representation
model training even when the initial poses lack accuracy.
While these methods appear relevant to improve the train-
ing of a NeRF they have not originally been developed to
address the particular localization problem. One pioneer
in this field is iNeRF [11], which proposes regressing the
camera poses based on an existing NeRF scene represen-
tation. It uses gradient descent to minimize the photomet-
ric error between pixels rendered from NeRF and the tar-
get image to optimize the initial pose estimate. It high-
lighted that the vicinity of convergence for pose estimation
is narrow, akin to direct image alignment methods. Building
upon this, Barf [9] drastically improves the range of con-
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Figure 2. CaLDiff block diagram. Pose Diffusion block takes in initial random poses PN and gives rough estimates P0. Here, Pt and
Pt−1 shown by magenta camera symbols, represents group of poses at the timestep t and t − 1 respectively. Subset Selection block
outputs Ps by choosing best poses from P0. Pose Refinement block futher refines Ps and gives the best estimte Pf .

vergence by gradually introducing higher frequency com-
ponents through a modular positional encoding strategy. It
is noticeable that NeRF-based camera pose refinement has
been widely used for real-time SLAM applications such as
iMAP [21] and its successors [22, 23]. While relying on
similar camera regression strategies for refinement, our pro-
posed method overcomes the limitation of needing an ac-
curate initial camera pose, enabling effective convergence
without any prior knowledge of camera localization.

NeRF-based visual localization With the recent
widespread adoption of NeRF for various tasks, the need to
localize a camera within such a representation has become
increasingly important. However, only a few approaches
have been specifically developed for this scenario. Among
the existing techniques, we can mention [24], which
introduces a particle-based localization strategy in a NeRF
volume. In this paper, the authors propose localizing a
wheeled robot by dispersing 3DoF particles in the robot’s
environment. While this strategy appears to be effective in
such scenarios, it cannot be generalized to more complex
situations where the camera to be localized may undergo
more complex motions. This major limitation is related
to the poor range of convergence of iNeRf used in this
technique. To avoid this issue, our strategy relies instead
on a diffusion model able to localize a camera in a 6DoF
environment effectively. Another notable technique is [25],
which proposes to utilize a generalizable and conditional
NeRF for 3D scene representation. This approach allows
for accurate localization by matching 3D descriptors gener-
ated by the NeRF model with 2D image features – extracted
from the query image. This technique includes an appear-

ance adaptation layer to handle domain gaps and improve
robustness against varying conditions between the training
and testing phases. While this approach demonstrates
appealing results, it requires reference posed images with
their respective depth map to fine-tune the generalizable
NeRF. In contrast, our strategy only necessitates a single
pre-train NeRF of any type. Some other work, such as [26],
proposes to take advantage of NeRFs to enhance sparse
maps with implicit scene representations to traditional
improve visual relocalization. This approach, which lever-
ages NeRF, allows for better localization performance in
challenging views by removing noisy 3D points and adding
back missing details omitted in sparse reconstructions.
While such a technique is used to improve conventional 3D
maps, our solution has been specifically designed to work
on NeRF without additional pre-processing.

3. Method
3.1. Problem Formulation

Given a monocular RGB image I, our method provides
6DoF pose P = [x,q] of the camera, given by 3D trans-
lation vector x and orientation represent by 4D quaternion
q. We formulate the problem of pose estimation as a two-
step process. First, find rough pose estimates using pose
diffusion, then refine it using iNeRF optimization.

3.2. Method Overview

The frame of proposed CaLDiff method for camera lo-
calization in NeRF is illustrated in Figure 2. As shown,
we use three different steps to obtain the desired camera
pose parameters. In the first step, the target image is lo-
calized coarsely using the proposed pose diffusion method.
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These coarse poses are then further processed by a local
refinement using the iNeRF optimization [11]. Due to the
particle-like nature of the diffusion process, we obtain many
coarse pose proposals, a subset of them is then selected for
the further refinement. Further details of each of these three
steps are provided in the Subsections 3.5, 3.6, and 3.7, re-
spectively. We provide the necessary developments before
presenting there subsections below.

3.3. Pose Initialization

To facilitate the stochastic behaviour of the diffusion pro-
cess, we sample P random poses PN = {Pi

N}Pi=0 from
uniform distribution in the normalized coordinates. We
sample translation vector x ∼ U(−0.5, 0.5)3 from uniform
distribution in R3. We sample a random point in unit sphere
for quaternion vector q. We take u, v, w ∼ U(0, 1) and
sample q as,

q = (
√
1− u sin(2πv),

√
1− u cos(2πv),

√
u sin(2πw),

√
u cos(2πw)).

(1)

Each of these pose will independently diffuse during pose
diffusion, over the course of multiple diffusion steps.

3.4. Conditioning Features

To meaningfully diffuse the randomly selected poses, to-
wards the pose of the target image (i.e. the image to be
localized), we condition diffusion model using feature vec-
tor f . This feature vector is generated by the conditioning
network Cρ using the target image Itarget as,

Cρ(Itarget) → f .

In our experiment, we use image features obtained form the
ResNet [27] train on the ImageNet [28] dataset.

3.5. Pose Diffusion

During the pose diffusion step, each pose Pi undergoes
N reverse diffusion steps via the diffusion model Dϕ, con-
ditioned on the feature vector f as,

Dϕ(Pt, f , t) → Pt−1.

We apply sinusoidal positional embedding γ on each ele-
ment of vector Pi and the time timestamp t. Input to the
MLP of Dϕ is the concatenated f , γ(Pt), and γ(t). We do
quaternion normalization on the output of the network to
get Pt−1, which is then fed back to the same network for
iterative refinement until t = 0. Quaternion normalization
is necessary because the diffusion process doesn’t work on
se(3) manifold and the quaternion vector needs to be nor-
malized to represent true rotation.

During training, we corrupt a target pose Ptarget by
adding noise for a given timestamp t, guided by the forward

diffusion equation 2.

Pt =
√
ᾱtP0 +

√
1− ᾱtϵ (2)

βt ∈ (0, 1) is the amount of noise added at step t w.r.t step
t− 1. αt = 1− βt is the amount of information preserved.
ᾱt =

∏t
i=1 αi is the amount of image information pre-

served at the step t w.r.t step 0. And, ϵ ∈ (0, 1) is random
noise. We use the reverse diffusion equation 3 to get Pt−1.

Pt−1 =
1√
αt

(
Pt −

1− αt√
1− ᾱt

ψ(Pt, t)

)
+ (1− αt)ϵ

(3)
ψ represents the diffusion model MLP which predicts the
noise added to the sample P0 for a given time step t. We
compare Pt−1 with the target pose Ptarget to get the error
used to train ψ. We use balanced mean square error (MSE)
loss represented by the equation 4 which balances transla-
tional and rotational MSE error with balance factor λ.

balanced loss = mse(xt−1,xtarget) + λ.mse(qt−1,qtarget)
(4)

Here, the timestep t ∈ {N − 1, N − 2, ..., 1, 0}. Final
estimates P0 are the rough estimates of this step.

3.6. Subset Selection

For the computational reasons, we select B best poses
PS = {Pi

S}
B

i=1 from P0 based on least photometric error
with respect to target image Itarget, and apply iNeRF opti-
mization on them. Photometric loss function L calculates
pixel-wise mean square error e between Itarget and NeRF
renders with the poses PS as represented by Equation (5).

e = L(Fθ(PS)), Itarget). (5)

The selected poses are the ones which result into the mini-
mum erros e. Please recall that we are eventually interested
to find poses that best minimizes the photometric loss.

3.7. Pose Refinement

During the NeRF training, we train the model Fθ for a
scene on image-pose pairs T = {(Ij ,Pj)Tj=1} having T
training samples. Fθ generalizes over the scene and learns
to render views from unseen poses. Given a pre-trained
NeRF model, a target image, and the coarse pose initializa-
tion obtained after the pose diffusion, now we are interested
to refine the pose further. Following [11], we refine each
pose PS by minimizing the photometric loss L in Equa-
tion (6), to get best estimate P̂S .

P̂S = argmin
PS

L(Fθ(PS), Itarget). (6)

For simplicity, among estimates {P̂i
S}Bi=1 corresponding to

the previously selected set B, we select the one with least
photometric error L(Fθ(P̂

i
S), Itarget). Let the finally se-

lected refined pose be Pf . Our results reported throughout
this paper correspond to Pf , unless mentioned otherwise.
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3.8. Pose Diffusion with iNeRF steps

We integrate the inverse NeRF step in Equation (6)
within reverse diffusion step in Equation (3). We ob-
tain P̄t−1 from Pt using reverse diffusion step of Dϕ.
During the integrated iNeRF diffusion, we do not di-
rectly feedback P̄t−1 to the network Dϕ. Instead, we
apply M steps of iNeRf optimization steps, as presented
in the Subsection 3.7. We apply iNeRF steps on each
poses P̄t−1 ∈ P̄t−1 to obtain the refined poses Pt−1.
The pose evolution during this process is shown below,

Pt P̄t−1

Dϕ

Pt−1

iNerf Dϕ

. . .

The choice of such pose evolution is made to make the
diffusion process aware of the downstream refinement pro-
cess. Another reason also involves it simplicity to integrate.
Please, refer to Figure 2 (on the left) for the schematics of
the iNeRF integration.

3.9. Network Architecture

Diffusion Model consists of linear layers with 5 hidden
layers of size 1024 and output layer of size 7. The 7 di-
mensional input and time step input of diffusion model is
encoded using sinusoidal embeddings before feding into
the network. We use ResNet18 [27] pre-trained on Ima-
geNet [28] dataset as the Conditioning Network.

We use Nerfacto model provided by Nerfstudio [8] for
creating NeRF models. It consists of a multi-resolution
hash grid with 16 levels, resolution varying from 16 to 2048,
paired with a small fused-MLP with 2 hidden layers of size
64 to represent the scene. Standard NeRF encoding is used
for positional encoding while directions are encoded using
spherical harmonics. A combination of piece-wise and pro-
posal sampler is used to sample 96 samples per ray.

3.10. The CaLDiff Algorithm

We provide the summary of the proposed CaLDiff local-
ization method in Algorithm 1. As can be seen, our method
uses the conditioning network Cρ to extract feature f . This
feature is then used in the diffusion network Dϕ to diffuse
the poses Pt in step 3. This process provides us the coarse
poses P0, from which a subset Ps of best poses are selected.
The final pose Pf is then obtained after refining Ps, fol-
lowed by the best pose selection.

Algorithm 1 Pf = CaLDiff localization (Itarget)

1. Initialize poses PN = {Pi
T }Pi=0.

2. Extract feature f = Cρ(Itarget).
3. Diffuse PN to P0={Pi

0} using Dϕ(Pt, f , t)→Pt−1.
4. Select the good-to-refine subset PS ⊂ P0.
5. Refine PS using iNeRF to Pf and select the best Pf .
6. Return the final refined pose Pf .

4. Experiments

In this section, we propose a large set of experiments
on three different datasets to highlight the advantages and
limitations of our localization technique. To better analyze
the relevance of the different modules composing CaLDiff,
we also conducted an in-depth ablation study.

4.1. Datasets

For our experiments, we relied on three datasets: Syn-
thetic dataset [4], 7scenes [29], and our Custom dataset
’Empty rooms’. For our synthetic experimentations, we
used three scenes of the dataset [4]: Cars, Chair, and Lego,
with its multiple subsets for training and testing. This syn-
thetic dataset is well suited to perform ablation analysis.
Moreover, it comes with its own challenges, such as full
360◦ scenes, repetitive patterns, textureless environments,
and poorly distributed visual data. In order to demonstrate
the capabilities of CaLDiff under real scenarios and to com-
pare it with existing state-of-the-art techniques, we opted
for 7scenes, which is a very commonly used dataset for
visual localization in indoor environments. This dataset is
composed of seven different indoor scenes with thousands
of images per scene, along with their ground truth poses.
We select 200 random images for training and 50 for test-
ing. Finally, to highlight the robustness of CaLDiff un-
der challenging environments, we prepare our own dataset
’Empty Rooms’. This dataset is composed of seven sets of
130 image-depth pairs captured in empty rooms and stair-
case scenarios. Note that most images captured under this
environment contain little to no textures. Therefore, we ac-
quired RGB images along with their LIDAR depth informa-
tion using an iPad 11 Pro. These depth maps are essential as
the image alone is insufficient for reconstructing the scene.
Given this information, we used Polycam [30] to generate
the ground truth poses used to train NeRFs.

4.2. Model Training and Evaluation Protocols

Train NeRF model. For the synthetic scenes, we use the
tiny NeRF [4] model, which is well suited for these mini-
malist scenarios. Regarding the real scenes, we opted for
the nerfacto [8] model, which is more appropriate for large
scenes. Having different network architectures for eval-
uation also demonstrates the flexibility of our technique,
which can be applied to most NeRF models. We con-
ducted training for the models using 20k iterations for Tiny
NeRF and 10k iterations for NerfActo. During each Tiny
NeRF iteration, a single random data point was selected
from the training set. In contrast, for NerfActo, each itera-
tion involved performing volumetric rendering on a subset
of 4,096 pixels, randomly chosen from the entire dataset.
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Train Diffusion model. We train the Diffusion model Dϕ

along with the conditioning network Cρ. We use Adam with
a learning rate of 0.0002. We use pose error balance factor
λ = 2. For each scene, we train the model for 20 epochs
with 5000 iterations per epoch. On each iteration, one pose
is randomly selected for the available training poses.

Testing protocol. We sample 100 random poses from a
uniform distribution and run the reverse diffusion process
on each pose for N = 50 timesteps conditioned on the tar-
get image. We use linear beta scheduling,

βt = β0 + t ∗ βN − β0
N

.

We take β0 = 0.0001 and βN = 0.02. This generates rough
pose estimates. We do NeRF renders for all the estimated
poses, and calculate the photometric error w.r.t. the ground
truth image. We select the B = 5 best poses with the least
photometric error and apply iNeRF optimization on them.

For iNeRF optimization, the mean square photometric
error is backpropagated via the NeRF model to optimize the
pose. We use Adam optimizer with a learning rate 0.007.
We do optimization for 300 steps. To reduce the computa-
tional cost, we render only a subset of pixels of the entire
image. We detect 100 SIFT keypoints on the target image
with a very low detection threshold, to get the points even
at highly textureless surfaces. We dilate keypoints locations
by 5 pixels and get the subset of pixels. We do NeRF render-
ing only at these pixel locations and compute photometric
loss with the subset pixels of the target image Itarget.

We compare our results with the hierarchical localization
technique using DISK [18] feature descriptor and Light-
Glue [31] matcher. For this purpose, we create a 3D map
using ground truth poses of train split and use the localiza-
tion pipeline provided by Hloc [2] to localize the test images
in the given 3D map. Also, we replaced the Pose Diffusion
step on our method with Monte Carlo-based sampling tech-
nique [32] as one of the baselines.

We report the success rate of localization on 4 thresh-
olds: (0.01,2°), (0.025,5°), (0.05,10°), (0.1,20°). Here, the
first element is translation threshold for normalized coordi-
nates and the second is rotational threshold in degrees.

4.3. Discussion

The results obtained on the synthetic scenes are avail-
able in Table 1. They clearly underline the robustness
of our technique in such scenarios regardless of the num-
ber of images used. This performance gap between the
feature-based technique Hloc and ours is due to multiple
factors. Indeed, the synthetic images, contain very little
textures, many repetitive patterns, and the visual content
is non-homogeneously distributed. These combined ele-
ments offer very unfavorable conditions for feature-based

Scene Split Hloc ↑
(DISK+lightglue)

CaLDiff ↑
(Ours)

cars 50-25 3, 9, 13, 15 32, 57, 63, 65
25-25 2, 4, 11, 12 8, 36, 44, 56
15-25 0, 0, 0, 1 4, 8, 20, 28

chair 50-25 4, 34, 42, 60 52, 72, 72, 84
25-25 4, 13, 29, 37 34, 48, 68, 80
15-25 2, 10,15,20 4, 16, 20, 28

lego 50-25 8, 34, 50, 56 80, 84, 84, 88
25-25 6, 26, 36,48 42, 67, 73, 81
15-25 0, 2, 10, 24 5, 12, 44, 63

Table 1. Results on synthetic dataset. We report the success rate
of localization on 4 thresholds: (0.01,2°), (0.025,5°), (0.05,10°),
(0.1,20°). Here, first element is translation threshold for normal-
ized coordinates and second is rotational threshold in degrees. For
each scene, we take 3 different train-test splits having 50-25, 25-
25, and 15-25 images. We take 5 variants of each type of train-test
splits and report the average result among them.

techniques while photometric approaches such as ours re-
main effective. These results are corroborated by our tests
on real-world images which we provide in Table 2. In
this table, we compare CalDiff with three other baselines:
Hloc [2], PoseNet [12] and MonteCarlo [24]. Unsurpris-
ingly, Hloc shows satisfactory performance on the 7scenes
dataset, except in texture-poor scenes such as the stairs.
CaLDiff, in contrast, is unaffected by textureless scenes,
exhibiting robust performance across the dataset. This re-
silience can be explained by the combined use of direct
pose regression combined with a photometric registration
technique. However, PoseNet, despite following a simi-
lar pipeline, performs poorly in 7scenes due to its single-
stage pose estimation. We can notice that the multi-steps
and multi-hypothesis approach of CaLdiff results in a much
more accurate and robust pose estimation. Finally, the
Monte Carlo method, while utilizing multiple pose hypothe-
ses, consistently fails across the dataset. This limitation
can be linked to its original design, which was intended
for 3DoF robot localization. The higher degree of free-
dom and the limited convergence range of iNeRF likely
result in the Monte Carlo particles failing to approximate
the expected position closely enough for effective conver-
gence. In the more challenging Empty rooms dataset, both
Hloc and PoseNet+iNeRF exhibit a marked decrease in
performance compared to the previous datasets. Notably,
PoseNet+iNeRF encounters complete failures in several
scenes. CaLDiff, while also experiencing a reduced suc-
cess rate relative to its performance on the 7scenes dataset,
demonstrates a comparatively better adaptability, maintain-
ing a degree of effectiveness despite the increased difficulty
of the dataset.
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Dataset Scene Hloc (Disk+lightglue) ↑ PoseNet+iNeRF ↑ Monte Carlo + iNeRF ↑ CaLDiff (Ours) ↑
chess 10, 60, 80, 86 8, 30, 30, 44 0, 0, 0, 0 40, 68, 88, 96
fire 14, 34, 62, 76, 17, 18, 19, 2 0, 0, 0, 0 64, 84, 84, 84
heads 16, 57, 74, 86 16, 20, 22, 28 0, 0, 0, 0 73, 86, 86, 86

7scenes office 14, 40, 44, 44 11, 18, 18, 9 0, 0, 0, 0 52, 96, 96, 96
pumpkin 0, 20, 48, 70 6, 17, 26, 31 0, 0, 0, 0 14, 54, 77, 77
redkitchen 12, 52, 68, 70 4, 9, 10, 15 0, 0, 0, 0 25, 75, 79, 86
stairs 0, 6, 8, 32 1, 2, 2, 5 0, 0, 0, 0 58, 58, 58, 75
room1 10, 20, 20, 20 0, 0, 0, 0 0, 0, 0, 0 23, 30, 30, 33
room2 3, 3, 3, 10 0, 0, 0, 0 0, 0, 0, 0 3, 3, 30, 50
room3 0, 0, 0, 3 0, 0, 0, 0 0, 0, 0, 0 7, 17, 27, 37

Empty room4 4, 14, 14, 22 0, 8, 9, 11 0, 0, 0, 0 22, 47, 70, 87
Rooms room5 6, 10, 12, 12 1, 1, 1, 5 0, 0, 0, 0 27, 58, 72, 87

room6 5, 17, 22, 22 2, 6, 7, 8 0, 0, 0, 0 35, 66, 80, 85
stairs1 3, 6, 6, 100 1, 1, 1, 2 0, 0, 0, 0 30, 45, 51, 66

Table 2. Evaluation on Real dataset. We compare CaLDiff with 3 benchmarks hloc [2], PoseNet [12]+iNeRF [11] and Monte
Carlo [32]+iNeRF based approaches. The best method in the row is in Bold. CaLDiff works better on all the cases.

Figure 3. Image rendered using the pose from CaLDiff (top), and
the corresponding ground-truth (bottom). Images from 7scenes
(left two) and Empty Rooms (right two), results in Table 2.

4.4. Qualitative results

We present the results for the reverse diffusion step for
a single pose. Figure 4 shows how the initial random par-
ticles at t = 50 move towards the ground truth pose as the
timestamp decreases to 0. The bold green camera at center
represents the ground truth pose and the faded one represent
the diffusion particle at the given timestamp t. In Figure 3,
we provide some example rendered images.

4.5. Ablation Study

In order to evaluate the individual contribution of each
module in CaLDiff, we propose an ablation study where
the technique is run with diffusion only and with the final
refinement module. This test has been conducted on the
synthetic dataset for three different scenes and with varying
numbers of images to demonstrate the ability of our local-
ization strategy to perform well even under sparse training
image datasets. The obtained results are visible in Table 3.
We can notice that the diffusion alone is able to provide
a rough localization estimation for most scenarios, for in-
stance, with 56% of the images being approximately local-
ized for the chair sequence. This initial pose estimation is
sufficient to reach the vicinity of convergence of our iN-

Scene Split CaLDiff (Pose
Diffusion only)

CaLDiff (without
integrated iNeRF)

cars 50-25 0, 1, 7, 28 29, 51, 61, 65
25-25 0, 0, 6, 20 8, 24, 36, 46
15-25 0, 0, 0, 3 4, 11, 15, 23

chair 50-25 0, 4, 18, 56 48, 76, 82, 90
25-25 0, 0, 11, 41 19, 30, 52, 64
15-25 0, 0, 2, 10 4, 5, 13, 29

lego 50-25 0, 4, 24, 60 76, 85, 87, 88
25-25 0, 1, 17, 61 44, 66, 74, 82
15-25 0, 0, 8, 26 6, 14, 32, 54

Table 3. Ablation Study on Synthetic Dataset. We run two ab-
lation studies on synthetic scenes. The first one discards the post-
refinement step and runs Pose Diffusion only. The second one runs
the exact process as in Figure 2, but omits the integrated iNeRF
block within the Pose Diffusion Block.

eRF refinement stage such that most scenes are accurately
localized. Regarding the resilience of our strategy to the
number and distribution of the training data, we can notice
a clear decline in accuracy when the training set is being
decimated. Nonetheless, despite such challenging condi-
tions, it remains able to localize a large number of testing
images. Similar conclusions are observable in real data, as
illustrated in Table 4.

4.6. Behaviour Study

We study how the localization error and execution time
varies on changing the number of diffusion particles P ,
number of train images T and number of reverse diffusion
stepsN . We conduct all the experiments on the Chess scene
from the 7-scenes dataset with 200-50 train-test split. We
run these experiments on an nvidia RTX 4080 GPU. An in-
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Figure 4. Pose diffusion step. Bold green camera represents the ground truth pose. We run reverse diffusion for N = 50 steps. Initial
particles at t = 50 are completely random and slowly converge toward the ground truth pose as t decreases. Finally, at t = 0 the particles
are tightly clustered around the ground truth pose.

Empty Rooms 7scenes
Scene Success Rate Scene Success Rate
room1 0, 0, 7, 17 chess 0, 8, 36, 84
room2 0, 0, 0, 7 fire 0, 8, 24, 64
room3 0, 0, 3, 27 heads 0, 9, 13, 40
room4 0, 0, 4, 48 office 0, 8, 24, 76
room5 0, 0, 10, 48 pumpkin 0, 0, 9, 42
room6 0, 4, 19, 53 redkitchen 0, 7, 21, 68
stairs1 0, 0, 4, 48 stairs 0, 8, 8, 33

Table 4. Ablation Study on Real data. We removed the pose
refinement process and report the results form the pose diffusion
steps only. The accurcy is highly impared both for 7scenes and
Empty rooms dataset.
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Figure 5. Behaviour Study. Shows the effect of number of diffu-
sion particles P , number of train images T and number of reverse
diffusion steps N on localization error and execution time.

crease in the number of train images has helped a lot to
decrease the localization error as seen in Figure 5a. More
specifically, when the number of train images increases
from 50 to 100. A similar trend can be observed in Table 1
when the number of train images increases from 15 to 25.

Increasing the number of particles shows a marked influ-
ence on the localization accuracy as seen in Figure 5b, but
the returns are diminishing. Figure 5c The runtime is not
greatly influenced by increasing the number of particles as
the majority of time is taken by post-iNeRF step, which re-
mains constant for any number of initial particles. We plot
in Figure 5d, the median localization error and runtimes for
a few different numbers of timesteps in the diffusion pro-
cess. The time taken for localization also increases due to
the reverse diffusion process taking longer time.

5. Conclusion
In this work, we studied the problem of localizing cam-

eras in the implicitly represented 3D scenes. The implicit
nature of the representation makes the use of existing meth-
ods difficult. Therefore, we proposed a novel camera local-
ization method that benefits from the recent success in the
diffusion based methods. Our diffusion model diffuses ran-
domly initialized camera poses conditioned upon the fea-
tures of the target image to be localized. The conditioned
diffusion model learns the pose gradient field to guide the
random poses towards the target’s location, in an iterative
process. We also showed that the integration of explicit
gradient steps leads to better results. The experiments con-
ducted on both synthetic and real datasets provide superior
results when compared to the state-of-the-art methods and
the established baselines, especially when the challenging
cases of the poor texture images are considered.

Limitations: One limitation of our method is the limited
speed for some real-time applications. This requirements
maybe addressed by application/hardware-specific code op-
timisation and the system configurations. Some aspects of
speeding up our method remains as our future works.
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